Show simple item record

dc.contributor.authorAksu, G. O.
dc.contributor.authorFındıkçı, İlknur Eruçar
dc.contributor.authorHaslak, Z. P.
dc.contributor.authorKeskin, S.
dc.date.accessioned2022-09-26T11:19:29Z
dc.date.available2022-09-26T11:19:29Z
dc.date.issued2022-01-01
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10679/7876
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1385894721031557
dc.description.abstractScreening of hypothetical covalent organic framework (hypoCOF) database enables to go beyond the current synthesized structures to design high-performance materials for CO2 separation. In this work, we followed a structurally guided computational screening approach to find the most promising candidates of hypoCOF adsorbents and membranes for CO2 capture and H2 purification. Grand canonical Monte Carlo (GCMC) simulations were used to evaluate CO2/H2 separation performance of 3184 hypoCOFs for pressure-swing adsorption (PSA) and vacuum-swing adsorption (VSA) processes. CO2/H2 adsorption selectivities and CO2 working capacities of hypoCOFs were calculated in the range of 6.13–742 (6.39–954) and 0.07–8.68 mol/kg (0.01–3.92 mol/kg), achieving higher values than those of experimentally synthesized COFs at PSA (VSA) conditions. Density functional theory (DFT) calculations revealed that the strength of hydrogen bonding between CO2 and the functional group of linkers is an important factor for determining the CO2 selectivity of hypoCOFs. The most predominant topologies and linker types were identified as bor and pts, linker91 (a triazine linker) and linker92 (a benzene linker) for the top-performing hypoCOF adsorbents, respectively. Molecular dynamics (MD) simulations of 794 hypoCOFs showed that they exceed the Robeson's upper bound by outperforming COF, zeolite, metal organic framework (MOF), and polymer membranes due to their high H2/CO2 selectivities, 2.66–6.14, and high H2 permeabilities, 9×105–4.5×106 Barrer. Results of this work will be useful to guide the synthesis of novel materials by providing molecular-level insights into the structural features of hypothetical COFs to achieve superior CO2 separation performance.en_US
dc.description.sponsorshipERC-2017-Starting ; European Union’s Horizon 2020
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/756489-COSMOS
dc.relation.ispartofChemical Engineering Journal
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAccelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screeningen_US
dc.typeArticleen_US
dc.description.versionPublisher versionen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.contributor.departmentÖzyeğin University
dc.contributor.authorID(ORCID 0000-0002-6059-6067 & YÖK ID 260094) Eruçar, İlknur
dc.contributor.ozuauthorFındıkçı, İlknur Eruçar
dc.identifier.volume427en_US
dc.identifier.wosWOS:000729988900005
dc.identifier.doi10.1016/j.cej.2021.131574en_US
dc.subject.keywordsCovalent organic framework (COF)en_US
dc.subject.keywordsH2 purificationen_US
dc.subject.keywordsCO2 captureen_US
dc.subject.keywordsMembraneen_US
dc.subject.keywordsMolecular simulationsen_US
dc.subject.keywordsDensity functional theory (DFT)en_US
dc.identifier.scopusSCOPUS:2-s2.0-85112299132
dc.relation.publicationcategoryArticle - International Refereed Journal - Institutional Academic Staff


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

Share this page