Publication:
Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening

dc.contributor.authorAksu, G. O.
dc.contributor.authorFındıkçı, İlknur Eruçar
dc.contributor.authorHaslak, Z. P.
dc.contributor.authorKeskin, S.
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorFINDIKÇI, Ilknur Eruçar
dc.date.accessioned2022-09-26T11:19:29Z
dc.date.available2022-09-26T11:19:29Z
dc.date.issued2022-01-01
dc.description.abstractScreening of hypothetical covalent organic framework (hypoCOF) database enables to go beyond the current synthesized structures to design high-performance materials for CO2 separation. In this work, we followed a structurally guided computational screening approach to find the most promising candidates of hypoCOF adsorbents and membranes for CO2 capture and H2 purification. Grand canonical Monte Carlo (GCMC) simulations were used to evaluate CO2/H2 separation performance of 3184 hypoCOFs for pressure-swing adsorption (PSA) and vacuum-swing adsorption (VSA) processes. CO2/H2 adsorption selectivities and CO2 working capacities of hypoCOFs were calculated in the range of 6.13–742 (6.39–954) and 0.07–8.68 mol/kg (0.01–3.92 mol/kg), achieving higher values than those of experimentally synthesized COFs at PSA (VSA) conditions. Density functional theory (DFT) calculations revealed that the strength of hydrogen bonding between CO2 and the functional group of linkers is an important factor for determining the CO2 selectivity of hypoCOFs. The most predominant topologies and linker types were identified as bor and pts, linker91 (a triazine linker) and linker92 (a benzene linker) for the top-performing hypoCOF adsorbents, respectively. Molecular dynamics (MD) simulations of 794 hypoCOFs showed that they exceed the Robeson's upper bound by outperforming COF, zeolite, metal organic framework (MOF), and polymer membranes due to their high H2/CO2 selectivities, 2.66–6.14, and high H2 permeabilities, 9×105–4.5×106 Barrer. Results of this work will be useful to guide the synthesis of novel materials by providing molecular-level insights into the structural features of hypothetical COFs to achieve superior CO2 separation performance.
dc.description.sponsorshipERC-2017-Starting ; European Union’s Horizon 2020
dc.description.versionPublisher version
dc.identifier.doi10.1016/j.cej.2021.131574
dc.identifier.issn1385-8947
dc.identifier.scopus2-s2.0-85112299132
dc.identifier.urihttp://hdl.handle.net/10679/7876
dc.identifier.urihttps://doi.org/10.1016/j.cej.2021.131574
dc.identifier.volume427
dc.identifier.wos000729988900005
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofChemical Engineering Journal
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020/756489-COSMOS
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsCovalent organic framework (COF)
dc.subject.keywordsH2 purification
dc.subject.keywordsCO2 capture
dc.subject.keywordsMembrane
dc.subject.keywordsMolecular simulations
dc.subject.keywordsDensity functional theory (DFT)
dc.titleAccelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening.pdf
Size:
16.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: