Publication: Benchmarking regression algorithms for income prediction modeling
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Sub Type
Access
restrictedAccess
Publication Status
published
Abstract
This paper aims to predict incomes of customers for banks. In this large-scale income prediction benchmarking paper, we study the performance of various state-of-the-art regression algorithms (e.g. ordinary least squares regression, beta regression, robust regression, ridge regression, MARS, ANN, LS-SVM and CART, as well as two-stage models which combine multiple techniques) applied to five real-life datasets. A total of 16 techniques are compared using 10 different performance measures such as R2, hit rate and preciseness etc. It is found that the traditional linear regression results perform comparable to more sophisticated non-linear and two-stage models.
Date
2016
Publisher
Elsevier
Description
Due to copyright restrictions, the access to the full text of this article is only available via subscription.