Person: DUMAN, Ekrem
Name
Job Title
First Name
Ekrem
Last Name
DUMAN
25 results
Publication Search Results
Now showing 1 - 10 of 25
ArticlePublication Metadata only VRP12 (vehicle routing problem with distances one and two) with side constraints(Elsevier, 2013-08) Ceranoglu, A. N.; Duman, Ekrem; Industrial Engineering; DUMAN, EkremThe problem undertaken in this study is inspired from a real life application. Consider a vehicle routing problem where the distances between the customer locations are either one or two. We name this problem as VRP12 in an analogy for the name TSP12 used for the traveling salesman problem in the literature. Additionally, assume that, the time to visit each customer is not constant and the visiting time together with the travel time constitutes the capacity of the vehicle. Furthermore, each customer has two characteristics and any two customers having a common characteristic should not be visited at the same time. If visited, a penalty fee incurs. In this study, we give the formulation of this problem and suggest some simple but effective algorithms that can be used to solve it. The algorithms are built with the relaxation of the side constraints but their performances are evaluated with their success in satisfying them. Information on our case study is also provided.Book ChapterPublication Metadata only Intelligent classification-based methods in customer profitability modeling(Springer International Publishing, 2015) Ekinci, Y.; Duman, Ekrem; Industrial Engineering; Kahraman, C.; Onar, S. C.; DUMAN, EkremThe expected profits from customers are important informations for the companies in giving acquisition/retention decisions and developing different strategies for different customer segments. Most of these decisions can be made through intelligent Customer Relationship Management (CRM) systems. We suggest embedding an intelligent Customer Profitability (CP) model in the CRM systems, in order to automatize the decisions that are based on CP values. Since one of the aims of CP analysis is to find out the most/least profitable customers, this paper proposes to evaluate the performances of the CP models based on the correct classification of customers into different profitability segments. Our study proposes predicting the segments of the customers directly with classification-based models and comparing the results with the traditional approach (value-based models) results. In this study, cost sensitive classification based models are used to predict the customer segments since misclassification of some segments are more important than others. For this aim, Classification and regression trees, Logistic regression and Chi-squared automatic interaction detector techniques are utilized. In order to compare the performance of the models, new performance measures are promoted, which are hit, capture and lift rates. It is seen that classification-based models outperform the previously used value-based models, which shows the proposed framework works out well.Conference paperPublication Metadata only Applying migrating birds optimization to credit card fraud detection(Springer Science+Business Media, 2013) Elikucuk, I.; Duman, Ekrem; Industrial Engineering; DUMAN, EkremWe discuss how the Migrating Birds Optimization algorithm (MBO) is applied to statistical credit card fraud detection problem. MBO is a recently proposed metaheuristic algorithm which is inspired by the V flight formation of the migrating birds and it was shown to perform very well in solving a combinatorial optimization problem, namely the quadratic assignment problem. As analyzed in this study, it has a very good performance in the fraud detection problem also when compared to classical data mining and genetic algorithms. Its performance is further increased by the help of some modified neighborhood definitions and benefit mechanisms.ArticlePublication Metadata only A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing(Elsevier, 2016-01-26) Zakaryazad, Ashkan; Duman, Ekrem; Industrial Engineering; DUMAN, Ekrem; Zakaryazad, AshkanThe rapid growth in data capture and computational power has led to an increasing focus on data-driven research. So far, most of the research is focused on predictive modeling using statistical optimization, while profit maximization has been given less priority. It is exactly this gap that will be addressed in this study by taking a profit-driven approach to develop a profit-driven Artificial Neural Network (ANN) classification technique. In order to do this, we have first introduced an ANN model with a new penalty function which gives variable penalties to the misclassification of instances considering their individual importance (profit of correctly classification and/or cost of misclassification) and then we have considered maximizing the total net profit. In order to generate individual penalties, we have modified the sum of squared errors (SSE) function by changing its values with respect to profit of each instance. We have implemented different versions of ANN of which five of them are new ones contributed in this study and two benchmarks from relevant literature. We appraise the effectiveness of the proposed models on two real-life data sets from fraud detection and a University of California Irvine (UCI) repository data set about bank direct marketing. For the comparison, we have considered both statistical and profit-driven performance metrics. Empirical results revealed that, although in most cases the statistical performance of new models are not better than previous ones, they turn out to be better when profit is the concern.ArticlePublication Metadata only Migrating birds optimization: a new metaheuristic approach and its performance on quadratic assignment problem(Elsevier, 2012-12-25) Duman, Ekrem; Uysal, M.; Alkaya, A. F.; Industrial Engineering; DUMAN, EkremWe propose a new nature inspired metaheuristic approach based on the V flight formation of the migrating birds which is proven to be an effective formation in energy saving. Its performance is tested on quadratic assignment problem instances arising from a real life problem and very good results are obtained. The quality of the solutions we report are better than simulated annealing, tabu search, genetic algorithm, scatter search, particle swarm optimization, differential evolution and guided evolutionary simulated annealing approaches. The proposed method is also tested on a number of benchmark problems obtained from the QAPLIB and in most cases it was able to obtain the best known solutions. These results indicate that our new metaheuristic approach could be an important player in metaheuristic based optimization.ArticlePublication Metadata only Comparison of computational intelligence models on forecasting automated teller machine cash demands(Old City Publishing, 2020) Alkaya, A. F.; Gultekin, O. G.; Danaci, E.; Duman, Ekrem; Industrial Engineering; DUMAN, EkremWe take up the problem of forecasting the amount of money to be withdrawn from automated teller machines (ATM). We compare the performances of eleven different algorithms from four different research areas on two different datasets. The exploited algorithms are fuzzy time series, multiple linear regression, artificial neural network, autoregressive integrated moving average, gaussian process regression, support vector regression, long-short term memory, simultaneous perturbation stochastic approximation, migrating birds optimization, differential evolution, and particle swarm optimization. The first dataset is very volatile and is obtained from a Turkish bank whereas the more stationary second dataset is obtained from a UK bank which was used in competitions previously. We use mean absolute deviation (MAD) to compare the algorithms since it provides a universal comparison ability independent of the magnitude of the data. The results show that support vector regression (SVR) performs the best on both data sets with a very short run time.Conference paperPublication Metadata only Profit-based artificial neural network (ANN) trained by migrating birds optimization: a case study in credit card fraud detection(World Academy of Science, Engineering and Technology, 2015) Zakaryazad, Ashkan; Duman, Ekrem; Kibekbaev, Azamat; Industrial Engineering; DUMAN, Ekrem; Zakaryazad, Ashkan; Kibekbaev, AzamatA typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Conference paperPublication Metadata only Turkish cashier problem with time windows and its solution by Migrating bird optimization algorithm(IEEE, 2023) Bassaleh, Ahmad; Duman, Ekrem; Industrial Engineering; DUMAN, Ekrem; Bassaleh, AhmadA new application of the traveling salesman problem referred to as the Turkish cashier problem (TCP) was recently introduced in literature. The problem revolved around a cashier that must visit several locations and return to his office. To complete his visits, he can use taxis or public transportation and the objective is to minimize the total transportation cost. To make this problem more practical, we took time into consideration by adding a soft time interval for each location obligating the cashier to make his visit within. If he fails to visit within the adequate time, a penalty must be paid. We name this problem as the TCP with time windows (TCPwTW). A metaheuristic algorithm known as the Migrating Birds Optimization (MBO) algorithm coupled with mathematical programming was developed to solve TCPwTW. We attempted to find the exact optimum using an exact solver where for complex problems, optimal solutions cannot be found. The quantitative study reveals that for problems having a loose time interval, the Solver serves as the best approach. On the other hand, for problems having tight time intervals, the best solutions can be obtained by the matheuristic.ArticlePublication Metadata only Social media analytical CRM: a case study in a bank(IOS Press, 2023) Duman, Ekrem; Industrial Engineering; DUMAN, EkremThe use of the social media (SM) has become more and more widespread during the last two decades, the companies started looking for insights for how they can improve their businesses using the information accumulating therein. In this regard, it is possible to distinguish between two lines of research: those based on anonymous data and those based on customer specific data. Although obtaining customer specific SM data is a challenging task, analysis of such individual data can result in very useful insights. In this study we take up this path for the customers of a bank, analyze their tweets and develop three kinds of analytical models: clustering, sentiment analysis and product propensity. For the latter one, we also develop a version where, besides the text information, the structural information available in the bank databases are also used in the models. The result of the study is a considerably more efficient set of analytical CRM models.ArticlePublication Metadata only A novel collection optimisation solution maximising long-term profits: a case study in an international bank(Taylor & Francis, 2017-10-02) Duman, Ekrem; Ecevit, F.; Çakır, Ç.; Altan, O.; Industrial Engineering; DUMAN, EkremWhen customers fail to pay the amount they owe to their bank related with a credit product (credit cards, overdraft accounts or instalment loans), the bank starts the collection process. This process typically lasts for a particular amount of time after which the customer is labelled as defaulted and a litigation period is launched. Banks try to minimise the percentage of credit exposure that goes to litigation since it negatively affects the bank’s profitability. Accordingly, they take various actions to maximise the collections before litigation. In this study, we approach this problem from a different perspective as we maximise not the short-term collections but the long-term revenues from customers by incorporating the churn effects of these actions in our modelling. © 2018 Informa UK Limited, trading as Taylor & Francis Group.
- «
- 1 (current)
- 2
- 3
- »