Publication:
Benchmarking regression algorithms for income prediction modeling

dc.contributor.authorKibekbaev, Azamat
dc.contributor.authorDuman, Ekrem
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorDUMAN, Ekrem
dc.contributor.ozugradstudentKibekbaev, Azamat
dc.date.accessioned2016-07-29T05:25:57Z
dc.date.available2016-07-29T05:25:57Z
dc.date.issued2016
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractThis paper aims to predict incomes of customers for banks. In this large-scale income prediction benchmarking paper, we study the performance of various state-of-the-art regression algorithms (e.g. ordinary least squares regression, beta regression, robust regression, ridge regression, MARS, ANN, LS-SVM and CART, as well as two-stage models which combine multiple techniques) applied to five real-life datasets. A total of 16 techniques are compared using 10 different performance measures such as R2, hit rate and preciseness etc. It is found that the traditional linear regression results perform comparable to more sophisticated non-linear and two-stage models.
dc.identifier.doi10.1016/j.is.2016.05.001
dc.identifier.endpage52
dc.identifier.issn0306-4379
dc.identifier.scopus2-s2.0-84969754474
dc.identifier.startpage40
dc.identifier.urihttp://hdl.handle.net/10679/4331
dc.identifier.urihttps://doi.org/10.1016/j.is.2016.05.001
dc.identifier.wos000379564900003
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherElsevier
dc.relation.ispartofInformation Systems
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsRegulation
dc.subject.keywordsIncome prediction
dc.subject.keywordsRegression techniques
dc.titleBenchmarking regression algorithms for income prediction modelingen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files