Publication:
RANSAC-based training data selection for emotion recognition from spontaneous speech

Placeholder

Institution Authors

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Access

restrictedAccess

Publication Status

published

Journal Issue

Abstract

Training datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar’s test.

Date

2010

Publisher

ACM

Description

Due to copyright restrictions, the access to the full text of this article is only available via subscription.

Keywords

Citation

Collections


Page Views

0

File Download

0