Organizational Unit:
Computer Science

Loading...
OrgUnit Logo

Date established

City

Country

ID

Publication Search Results

Now showing 1 - 10 of 490
  • Placeholder
    ArticlePublication
    Agent-based semantic collaborative search
    (Executive Committee, Taiwan Academic Network, Ministry of Education, 2013) Şensoy, Murat; Computer Science; ŞENSOY, Murat
    Next generation of the Web builds upon technologies such as Semantic Web and Intelligent Software Agents. These technologies aim at knowledge representation that allows both humans and software agents to understand and reason about the content on the Web. In this paper, we propose an agent-based approach for collaborative distributed semantic search of the Web resources. Our approach enables a human user to semantically describe his search interest to an agent. Depending on the interests of their users, the agents evolve their ontologies and create search concepts. Based on these search concepts, the agents coordinate and compose virtual communities. Within these communities, agents with similar interests interact to locate and share URLs relevant to search interests of their users. Through these interactions, shared vocabularies are cooperatively emerged by agents to communicate properly within the communities. Our empirical evaluations and analysis of the proposed approach show that our approach combines Semantic Web technologies and multi-agent systems in a novel way to enable users to find and share the URLs relevant to their search interests.
  • Placeholder
    ArticlePublication
    A generalized stereotype learning approach and its instantiation in trust modeling
    (Elsevier, 2018-08) Fang, H.; Zhang, J.; Şensoy, Murat; Computer Science; ŞENSOY, Murat
    Owing to the lack of historical data regarding an entity in online communities, a user may rely on stereotyping to estimate its behavior based on historical data about others. However, these stereotypes cannot accurately reflect the user's evaluation if they are based on limited historical data about other entities. In view of this issue, we propose a novel generalized stereotype learning approach: the fuzzy semantic framework. Specifically, we propose a fuzzy semantic process, incorporated with traditional machine-learning techniques to construct stereotypes. It consists of two sub-processes: a fuzzy process that generalizes over non-nominal attributes (e.g., price) by splitting their values in a fuzzy manner, and a semantic process that generalizes over nominal attributes (e.g., location) by replacing their specific values with more general terms according to a predefined ontology. We also implement the proposed framework on the traditional decision tree method to learn users' stereotypes and validate the effectiveness of our framework for computing trust in e-marketplaces. Experiments on real data confirm that our proposed model can accurately measure the trustworthiness of sellers with which buyers have limited experience.
  • Placeholder
    ArticlePublication
    Robotic grasping and manipulation through human visuomotor learning
    (Elsevier, 2012-03) Moore, B.; Öztop, Erhan; Computer Science; ÖZTOP, Erhan
    A major goal of robotics research is to develop techniques that allow non-experts to teach robots dexterous skills. In this paper, we report our progress on the development of a framework which exploits human sensorimotor learning capability to address this aim. The idea is to place the human operator in the robot control loop where he/she can intuitively control the robot, and by practice, learn to perform the target task with the robot. Subsequently, by analyzing the robot control obtained by the human, it is possible to design a controller that allows the robot to autonomously perform the task. First, we introduce this framework with the ball-swapping task where a robot hand has to swap the position of the balls without dropping them, and present new analyses investigating the intrinsic dimension of the ballswapping skill obtained through this framework. Then, we present new experiments toward obtaining an autonomous grasp controller on an anthropomorphic robot. In the experiments, the operator directly controls the (simulated) robot using visual feedback to achieve robust grasping with the robot. The data collected is then analyzed for inferring the grasping strategy discovered by the human operator. Finally, a method to generalize grasping actions using the collected data is presented, which allows the robot to autonomously generate grasping actions for different orientations of the target object.
  • Placeholder
    ArticlePublication
    Human adaptation to human–robot shared control
    (IEEE, 2019-04) Amirshirzad, Negin; Kumru, Asiye; Öztop, Erhan; Computer Science; Psychology; KUMRU, Asiye; ÖZTOP, Erhan; Amirshirzad, Negin
    Human-in-the-loop robot control systems naturally provide the means for synergistic human-robot collaboration through control sharing. The expectation in such a system is that the strengths of each partner are combined to achieve a task performance higher than that can be achieved by the individual partners alone. However, there is no general established rule to ensure a synergistic partnership. In particular, it is not well studied how humans adapt to a nonstationary robot partner whose behavior may change in response to human actions. If the human is not given the choice to turn on or off the control sharing, the robot-human system can even be unstable depending on how the shared control is implemented. In this paper, we instantiate a human-robot shared control system with the "ball balancing task," where a hall must be brought to a desired position on a tray held by the robot partner. The experimental setup is used to assess the effectiveness of the system and to find out the differences in human sensorimotor learning when the robot is a control sharing partner, as opposed to being a passive teleoperated robot. The results of the four-day 20-subject experiments conducted show that 1) after a short human learning phase, task execution performance is significantly improved when both human and robot are in charge. Moreover, 2) even though the subjects are not instructed about the role of the robot, they do learn faster despite the nonstationary behavior of the robot caused by the goal estimation mechanism built in.
  • ArticlePublicationOpen Access
    The effect of appearance of virtual agents in human-agent negotiation
    (MDPI, 2022-09) Türkgeldi, Berkay; Özden, Cana Su; Aydoğan, Reyhan; Computer Science; AYDOĞAN, Reyhan; Türkgeldi, Berkay; Özden, Cana Su
    Artificial Intelligence (AI) changed our world in various ways. People start to interact with a variety of intelligent systems frequently. As the interaction between human and AI systems increases day by day, the factors influencing their communication have become more and more important, especially in the field of human-agent negotiation. In this study, our aim is to investigate the effect of knowing your negotiation partner (i.e., opponent) with limited knowledge, particularly the effect of familiarity with the opponent during human-agent negotiation so that we can design more effective negotiation systems. As far as we are aware, this is the first study investigating this research question in human-agent negotiation settings. Accordingly, we present a human-agent negotiation framework and conduct a user experiment in which participants negotiate with an avatar whose appearance and voice are a replica of a celebrity of their choice and with an avatar whose appearance and voice are not familiar. The results of the within-subject design experiment show that human participants tend to be more collaborative when their opponent is a celebrity avatar towards whom they have a positive feeling rather than a non-celebrity avatar.
  • Placeholder
    ArticlePublication
    A near Pareto optimal approach to student–supervisor allocation with two sided preferences and workload balance
    (Elsevier, 2019-03) Sanchez-Anguix, V.; Chalumuri, R.; Aydoğan, Reyhan; Julian, V.; Computer Science; AYDOĞAN, Reyhan
    The problem of allocating students to supervisors for the development of a personal project or a dissertation is a crucial activity in the higher education environment, as it enables students to get feedback on their work from an expert and improve their personal, academic, and professional abilities. In this article, we propose a multi-objective and near Pareto optimal genetic algorithm for the allocation of students to supervisors. The allocation takes into consideration the students and supervisors' preferences on research/project topics, the lower and upper supervision quotas of supervisors, as well as the workload balance amongst supervisors. We introduce novel mutation and crossover operators for the studentsupervisor allocation problem. The experiments carried out show that the components of the genetic algorithm are more apt for the problem than classic components, and that the genetic algorithm is capable of producing allocations that are near Pareto optimal in a reasonable time.
  • Placeholder
    ArticlePublication
    Action and language mechanisms in the brain: data, models and neuroinformatics
    (Springer Science+Business Media, 2014-01) Arbib, M. A.; Bonaiuto, J. J.; Bornkessel-Schlesewsky, I.; Kemmerer, D.; MacWhinney, B.; Årup Nielsen, F.; Öztop, Erhan; Computer Science; ÖZTOP, Erhan
    We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience.
  • ArticlePublicationOpen Access
    Symbol emergence in cognitive developmental systems: A survey
    (IEEE, 2019-12) Taniguchi, T.; Uğur, E.; Hoffmann, M.; Jamone, L.; Nagai, T.; Rosman, B.; Matsuka, T.; Iwahashi, N.; Öztop, Erhan; Piater, J.; Worgotter, F.; Computer Science; ÖZTOP, Erhan
    Humans use signs, e.g., sentences in a spoken language, for communication and thought. Hence, symbol systems like language are crucial for our communication with other agents and adaptation to our real-world environment. The symbol systems we use in our human society adaptively and dynamically change over time. In the context of artificial intelligence (AI) and cognitive systems, the symbol grounding problem has been regarded as one of the central problems related to symbols. However, the symbol grounding problem was originally posed to connect symbolic AI and sensorimotor information and did not consider many interdisciplinary phenomena in human communication and dynamic symbol systems in our society, which semiotics considered. In this paper, we focus on the symbol emergence problem, addressing not only cognitive dynamics but also the dynamics of symbol systems in society, rather than the symbol grounding problem. We first introduce the notion of a symbol in semiotics from the humanities, to leave the very narrow idea of symbols in symbolic AI. Furthermore, over the years, it became more and more clear that symbol emergence has to be regarded as a multifaceted problem. Therefore, second, we review the history of the symbol emergence problem in different fields, including both biological and artificial systems, showing their mutual relations. We summarize the discussion and provide an integrative viewpoint and comprehensive overview of symbol emergence in cognitive systems. Additionally, we describe the challenges facing the creation of cognitive systems that can be part of symbol emergence systems.
  • Placeholder
    ArticlePublication
    Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach
    (Springer Science+Business Media, 2014-01) Peternel, L.; Petric, T.; Öztop, Erhan; Babic, J.; Computer Science; ÖZTOP, Erhan
    We propose an approach to efficiently teach robots how to perform dynamic anipulation tasks in cooperation with a human partner. The approach utilises human sensorimotor learning ability where the human tutor controls the robot through a multi-modal interface to make it perform the desired task. During the tutoring, the robot simultaneously learns the action policy of the tutor and through time gains full autonomy. We demonstrate our approach by an experiment where we taught a robot how to perform a wood sawing task with a human partner using a two-person crosscut saw. The challenge of this experiment is that it requires precise coordination of the robot’s motion and complianceaccording to the partner’s actions. To transfer the sawing skill from the tutor to the robot we used Locally Weighted Regression for trajectory generalisation, and adaptive oscillators for adaptation of the robot to the partner’s motion.
  • Placeholder
    ArticlePublication
    Automated refinement of models for model-based testing using exploratory testing
    (Springer International Publishing, 2017-09) Şahin Gebizli, Ceren; Sözer, Hasan; Computer Science; SÖZER, Hasan; Şahin Gebizli, Ceren
    Model-based testing relies on models of the system under test to automatically generate test cases. Consequently, the effectiveness of the generated test cases depends on models. In general, these models are created manually, and as such, they are subject to errors like omission of certain system usage behavior. Such omitted behaviors are also omitted by the generated test cases. In practice, these faults are usually detected with exploratory testing. However, exploratory testing mainly relies on the knowledge and manual activities of experienced test engineers. In this paper, we introduce an approach and a toolset, ARME, for automatically refining system models based on recorded testing activities of these engineers. ARME compares the recorded execution traces with respect to the possible execution paths in test models. Then, these models are automatically refined to incorporate any omitted system behavior and update model parameters to focus on the mostly executed scenarios. The refined models can be used for generating more effective test cases. We applied our approach in the context of 3 industrial case studies to improve the models for model-based testing of a digital TV system. In all of these case studies, several critical faults were detected after generating test cases based on the refined models. These faults were not detected by the initial set of test cases. They were also missed during the exploratory testing activities.