Publication:
RANSAC-based training data selection for emotion recognition from spontaneous speech

dc.contributor.authorEroğlu Erdem, Ç.
dc.contributor.authorBozkurt, E.
dc.contributor.authorErzin, E.
dc.contributor.authorErdem, Tanju
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorERDEM, Arif Tanju
dc.date.accessioned2016-02-11T14:25:41Z
dc.date.available2016-02-11T14:25:41Z
dc.date.issued2010
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractTraining datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar’s test.
dc.description.sponsorshipTÜBİTAK ; Bahçeşehir University Research Fund
dc.identifier.doi10.1145/1877826.1877831
dc.identifier.endpage14
dc.identifier.isbn978-1-4503-0170-1
dc.identifier.scopus2-s2.0-78650482962
dc.identifier.startpage9
dc.identifier.urihttp://hdl.handle.net/10679/2048
dc.identifier.urihttps://doi.org/10.1145/1877826.1877831
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherACM
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/110E056
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/106E201
dc.relation.ispartofAFFINE '10 Proceedings of the 3rd international workshop on Affective interaction in natural environments
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsAffect recognition
dc.subject.keywordsEmotional speech classification
dc.subject.keywordsRANSAC
dc.subject.keywordsData cleaning
dc.subject.keywordsData pruning
dc.titleRANSAC-based training data selection for emotion recognition from spontaneous speechen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

Collections