Publication: Life cycle energy assessment of a school building under envelope retrofit: An approach towards environmental impact reduction
Loading...
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
Conference paper
Access
info:eu-repo/semantics/openAccess
Publication Status
Published
Abstract
Energy efficiency of existing buildings is a concept to manage and restrain the growth in energy consumption and one of the crucial issues due to the magnitude of the sector. Educational buildings are in charge of about 15% of the total energy consumption of the non-residential building sector. However, not only operational but also embodied energy of a building should be reduced to get the overall benefits of energy efficiency, where, using energy efficient architectural measures and low emitting materials during every retrofit action can be a logical step. The majority of buildings in Turkey and EU was built earlier than the development of the energy efficiency in the construction sector, hence, without energy retrofit, consume an enormous amount of energy that can be averted significantly by the implementation of some even not advanced retrofit measures. Furthermore, demolishing of a building to construct a new one is not a rational approach concerning cost, time and environmental pollution. The study has been focused on the impact assessment of the various architectural scenarios of energy efficiency upgrading on the Life Cycle Energy Consumption (LCEC) and Life Cycle CO2 (LCCO2) emission. Within the scope of the study, a primary school building is selected to be analysed. Through analysis, the total embodied and operational energy use and CO2 emission regarding the life cycle phase of the building is quantitatively defined and investigated in the framework of life cycle inventory. The paper concentrates on the operation and embodied energy consumption arising from the application of a variety of measures on the building envelope. An educational building with low LCCO2 emissions and LCEC in Turkey is proposed. To exemplify the approach, contributions are applied to a case study in Istanbul as a representative school building. The primary energy consumption of the case study building is calculated with a dynamic simulation tool, EnergyPlus. Afterwards, a sort of architectural energy efficient measures is implemented in the envelope while the lighting and mechanical systems remain constant. The energy used in the production and transportation of materials, which are the significant parts of the embodied energy, are taken into account as well.
Date
2019
Publisher
EDP Sciences