Publication: Not all mistakes are equal
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
Conference paper
Access
info:eu-repo/semantics/restrictedAccess
Publication Status
Published
Abstract
In many tasks, classifiers play a fundamental role in the way an agent behaves. Most rational agents collect sensor data from the environment, classify it, and act based on that classification. Recently, deep neural networks (DNNs) have become the dominant approach to develop classifiers due to their excellent performance. When training and evaluating the performance of DNNs, it is normally assumed that the cost of all misclassification errors are equal. However, this is unlikely to be true in practice. Incorrect classification predictions can cause an agent to take inappropriate actions. The costs of these actions can be asymmetric, vary from agent-to-agent, and depend on context. In this paper, we discuss the importance of considering risk and uncertainty quantification together to reduce agents' cost of making misclassifications using deep classifiers.
Date
2020
Publisher
The ACM Digital Library