Publication:
Not all mistakes are equal

dc.contributor.authorŞensoy, M.
dc.contributor.authorSaleki, Maryam
dc.contributor.authorJulier, S.
dc.contributor.authorAydoğan, Reyhan
dc.contributor.authorReid, J.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.contributor.ozugradstudentSaleki, Maryam
dc.date.accessioned2021-07-07T21:02:32Z
dc.date.available2021-07-07T21:02:32Z
dc.date.issued2020
dc.description.abstractIn many tasks, classifiers play a fundamental role in the way an agent behaves. Most rational agents collect sensor data from the environment, classify it, and act based on that classification. Recently, deep neural networks (DNNs) have become the dominant approach to develop classifiers due to their excellent performance. When training and evaluating the performance of DNNs, it is normally assumed that the cost of all misclassification errors are equal. However, this is unlikely to be true in practice. Incorrect classification predictions can cause an agent to take inappropriate actions. The costs of these actions can be asymmetric, vary from agent-to-agent, and depend on context. In this paper, we discuss the importance of considering risk and uncertainty quantification together to reduce agents' cost of making misclassifications using deep classifiers.en_US
dc.identifier.endpage1998en_US
dc.identifier.isbn978-145037518-4
dc.identifier.issn1548-8403
dc.identifier.scopus2-s2.0-85096694990
dc.identifier.startpage1996en_US
dc.identifier.urihttp://hdl.handle.net/10679/7467
dc.identifier.volume2020en_US
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherThe ACM Digital Libraryen_US
dc.relation.ispartofAAMAS '20: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsCost-sensitive learningen_US
dc.subject.keywordsDeep learningen_US
dc.subject.keywordsRisken_US
dc.subject.keywordsUncertaintyen_US
dc.titleNot all mistakes are equalen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections