Publication:
RANSAC-based training data selection for speaker state recognition

Loading...
Thumbnail Image

Institution Authors

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Access

openAccess

Publication Status

published

Journal Issue

Abstract

We present a Random Sampling Consensus (RANSAC) based training approach for the problem of speaker state recognition from spontaneous speech. Our system is trained and tested with the INTERSPEECH 2011 Speaker State Challenge corpora that includes the Intoxication and the Sleepiness Subchallenges, where each sub-challenge defines a two-class classification task. We aim to perform a RANSAC-based training data selection coupled with the Support Vector Machine (SVM) based classification to prune possible outliers, which exist in the training data. Our experimental evaluations indicate that utilization of RANSAC-based training data selection provides 66.32 % and 65.38 % unweighted average (UA) recall rate on the development and test sets for the Sleepiness Sub-challenge, respectively and a slight improvement on the Intoxicationubchallenge performance.

Date

2011

Publisher

The International Speech Communications Association

Description

Keywords

Citation

Collections


Page Views

0

File Download

0