Publication:
RANSAC-based training data selection for speaker state recognition

dc.contributor.authorBozkurt, E.
dc.contributor.authorErzin, E.
dc.contributor.authorErdem, Ç. E.
dc.contributor.authorErdem, Tanju
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorERDEM, Arif Tanju
dc.date.accessioned2016-02-11T06:46:22Z
dc.date.available2016-02-11T06:46:22Z
dc.date.issued2011
dc.description.abstractWe present a Random Sampling Consensus (RANSAC) based training approach for the problem of speaker state recognition from spontaneous speech. Our system is trained and tested with the INTERSPEECH 2011 Speaker State Challenge corpora that includes the Intoxication and the Sleepiness Subchallenges, where each sub-challenge defines a two-class classification task. We aim to perform a RANSAC-based training data selection coupled with the Support Vector Machine (SVM) based classification to prune possible outliers, which exist in the training data. Our experimental evaluations indicate that utilization of RANSAC-based training data selection provides 66.32 % and 65.38 % unweighted average (UA) recall rate on the development and test sets for the Sleepiness Sub-challenge, respectively and a slight improvement on the Intoxicationubchallenge performance.
dc.description.sponsorshipTÜBİTAK ; Türk Telekom
dc.identifier.endpage3303
dc.identifier.isbn978-1-61839-270-1
dc.identifier.scopus2-s2.0-84865741850
dc.identifier.startpage3300
dc.identifier.urihttp://hdl.handle.net/10679/2029
dc.identifier.wos000316502201314
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherThe International Speech Communications Association
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/110E056
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/106E201
dc.relation.ispartof12th Annual Conference of the International Speech Communication Association 2011 (INTERSPEECH 2011)
dc.relation.publicationcategoryInternational
dc.rightsopenAccess
dc.subject.keywordsSpeaker state challenge
dc.subject.keywordsIntoxication
dc.subject.keywordsSleepiness
dc.subject.keywordsRansac
dc.titleRANSAC-based training data selection for speaker state recognitionen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RANSAC-based Training Data Selection for Speaker State Recognition.pdf
Size:
167.82 KB
Format:
Adobe Portable Document Format
Description:
RANSAC-based training data selection for speaker state recognition

Collections