Publication: Implementing quantum finite automata algorithms on noisy devices
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
conferenceObject
Sub Type
Conference paper
Access
restrictedAccess
Publication Status
Published
Abstract
Quantum finite automata (QFAs) literature offers an alternative mathematical model for studying quantum systems with finite memory. As a superiority of quantum computing, QFAs have been shown exponentially more succinct on certain problems such as recognizing the language MODp={aj∣j≡0modp} with bounded error, where p is a prime number. In this paper we present improved circuit based implementations for QFA algorithms recognizing the MODp problem using the Qiskit framework. We focus on the case p= 11 and provide a 3 qubit implementation for the MOD11 problem reducing the total number of required gates using alternative approaches. We run the circuits on real IBM quantum devices but due to the limitation of the real quantum devices in the NISQ era, the results are heavily affected by the noise. This limitation reveals once again the need for algorithms using less amount of resources. Consequently, we consider an alternative 3 qubit implementation which works better in practice and obtain promising results even for the problem MOD31.
Date
2021
Publisher
Springer