Publication:
Explain to me: Towards understanding privacy decisions

Placeholder

Institution Authors

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Sub Type

Conference paper

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

Privacy assistants help users manage their privacy online. Their tasks could vary from detecting privacy violations to recommending sharing actions for content that the user intends to share. Recent work on these tasks are promising and show that privacy assistants can successfully tackle them. However, for such privacy assistants to be employed by users, it is important that these assistants can explain their decisions to users. Accordingly, this work develops a methodology to create explanations of privacy. The methodology is based on identifying important topics in a domain of interest, providing explanation schemes for decisions, and generating them automatically. We apply our proposed methodology on a real-world privacy data set, which contains images labeled as private or public to explain the labels.

Date

2023

Publisher

International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)

Description

Keywords

Citation

Collections


0

Views

0

Downloads