Publication: Evidence for WW/WZ vector boson scattering in the decay channel ℓνqq produced in association with two jets in proton-proton collisions at √s = 13 TeVeV
dc.contributor.author | Tumasyan, A. | |
dc.contributor.author | Işıldak, Bora | |
dc.contributor.department | Natural and Mathematical Sciences | |
dc.contributor.ozuauthor | IŞILDAK, Bora | |
dc.creator | The CMS Collaboration | |
dc.date.accessioned | 2023-09-12T13:13:45Z | |
dc.date.available | 2023-09-12T13:13:45Z | |
dc.date.issued | 2022-11-10 | |
dc.description.abstract | Evidence is reported for electroweak (EW) vector boson scattering in the decay channel ℓνqq of two weak vector bosons WV (V=W or Z), produced in association with two parton jets. The search uses a data set of proton-proton collisions at 13 TeV collected with the CMS detector during 2016–2018 with an integrated luminosity of 138fb−1. Events are selected requiring one lepton (electron or muon), moderate missing transverse momentum, two jets with a large pseudorapidity separation and a large dijet invariant mass, and a signature consistent with the hadronic decay of a W/Z boson. The cross section is computed in a fiducial phase space defined at parton level requiring all parton transverse momenta pT>10GeV and at least one pair of outgoing partons with invariant mass mqq>100GeV. The measured and expected EW WV production cross sections are 1.90−0.46+0.53 pb and 2.23−0.11+0.08(scale)±0.05(PDF) pb, respectively, where PDF is the parton distribution function. The observed EW signal strength is μEW=0.85±0.12(stat)−0.17+0.19(syst), corresponding to a signal significance of 4.4 standard deviations with 5.1 expected, and it is measured keeping the quantum chromodynamics (QCD) associated diboson production fixed to the standard model prediction. This is the first evidence of vector boson scattering in the ℓνqq decay channel at LHC. The simultaneous measurement of the EW and QCD associated diboson production agrees with the standard model prediction. | en_US |
dc.description.sponsorship | BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MOST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AE and PCTI (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie -Curie Program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the "Excellence of Science -EOS" -be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy -EXC 2121 "Quantum Universe" 390833306, and under project number 400140256 -GRK2497; the Lendtilet ("Momentum") Prog ram and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundacao para a Ciencia e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 14.W03.31.0026 and no. FSWW-2020-0008, and the Russian Foundation for Basic Research, project No. 19-42703014 (Russia); MCIN/AEI/10. 13039/501100011033, ERDF "a way of making Europe", and the Programa Estatal de Fomento de la Investigation Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). | |
dc.description.version | Publisher version | en_US |
dc.identifier.doi | 10.1016/j.physletb.2022.137438 | en_US |
dc.identifier.issn | 0370-2693 | en_US |
dc.identifier.scopus | 2-s2.0-85142894908 | |
dc.identifier.uri | http://hdl.handle.net/10679/8805 | |
dc.identifier.uri | https://doi.org/10.1016/j.physletb.2022.137438 | |
dc.identifier.volume | 834 | en_US |
dc.identifier.wos | 000890050000001 | |
dc.language.iso | eng | en_US |
dc.peerreviewed | yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Physics Letters B | |
dc.relation.publicationcategory | International Refereed Journal | |
dc.rights | Attribution 4.0 International | * |
dc.rights | openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.keywords | CMS | en_US |
dc.subject.keywords | Vector boson scattering | en_US |
dc.title | Evidence for WW/WZ vector boson scattering in the decay channel ℓνqq produced in association with two jets in proton-proton collisions at √s = 13 TeVeV | en_US |
dc.type | article | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 7a8a2b87-4f48-440a-a491-3c0b2888cbca | |
relation.isOrgUnitOfPublication.latestForDiscovery | 7a8a2b87-4f48-440a-a491-3c0b2888cbca |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Evidence for WWWZ vector boson scattering in the decay channel ℓνqq produced in association with two jets in proton-proton collisions at √s = 13 TeV.pdf
- Size:
- 1.14 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: