Publication:
Finite approximations in discrete-time stochastic control : quantized models and asymptotic optimality

Placeholder

Institution Authors

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

bookPart

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original models and the methods are general enough that researchers can build corresponding approximation results, typically with no additional assumptions.

Date

2018

Publisher

Birkhäuser Basel

Description

Keywords

Citation


Page Views

0

File Download

0