Publication:
Force reference extraction via human interaction for a robotic polishing task: Force-induced motion

Loading...
Thumbnail Image

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Access

openAccess

Publication Status

Published

Journal Issue

Abstract

In this paper, a method to control a manipulator using force-induced trajectory is proposed. The trajectory is learned from an operator doing the polishing task using a tool attached to the robot's end-effector. The learning process is performed by a deep neural network which is designed and trained to generate a force profile according to the states (joints' positions and velocities). The admittance control technique is utilized to make the manipulator compliant to the operator movements in the teaching mode. Spring-Damper system along with Inertia-Damper system has been studied to impose the relationship between the operator's applied force and the reaction of the manipulator. The universal robot (UR5) aside with a force sensor (OptoForce) are used to run the experiment. Robot Operation System (ROS) is used to accomplish the task in real-time. The polishing task is learned and achieved by the robot itself, and the force trajectories are better followed using the Inertia-Damper system as the admittance controlling scheme.

Date

2019-10

Publisher

IEEE

Description

Keywords

Citation


Page Views

0

File Download

0