Publication:
Combining tensile test results with atomistic predictions of elastic modulus of graphene/polyamide-6,6 nanocomposites

dc.contributor.authorBatyrov, Merdan
dc.contributor.authorDericiler, K.
dc.contributor.authorPalabıyık, Büşra Akkoca
dc.contributor.authorOkan, B. S.
dc.contributor.authorÖztürk, Hande
dc.contributor.authorFındıkçı, İlknur Eruçar
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorKAYMAKSÜT, Hande Öztürk
dc.contributor.ozuauthorFINDIKÇI, Ilknur Eruçar
dc.contributor.ozugradstudentBatyrov, Merdan
dc.contributor.ozugradstudentPalabıyık, Büşra Akkoca
dc.date.accessioned2023-08-29T08:45:06Z
dc.date.available2023-08-29T08:45:06Z
dc.date.issued2023-06
dc.description.abstractIn this work, we combined tensile test results with atomistic simulations to investigate the effect of filler parameters including distribution, stacking, loading and lateral graphene size on elastic moduli of graphene/PA-6,6 nanocomposites. Stacked and randomly distributed atomistic models were adapted in Molecular Dynamics (MD) simulations to establish the limits of stiffness enhancement in graphene reinforced PA-6,6 nanocomposites with loading ratios changing from 0 to 1 wt%. Experimental results showed that incorporating of 0.3–0.4 wt% graphene loading improved the elastic modulus of the neat polymer by 41.7%−43.5%. While the test sample behaved close to the computational results of the stacked atomistic model at low graphene loadings up to 0.4 wt%, it overshot the predictions of the randomly distributed model at all considered loadings up to 1 wt%. Elastic moduli of graphene-based PA-6,6 nanocomposites increased linearly with graphene loading in the stacked model, however, no such relation was detected in the randomly distributed model. The lower stiffness enhancement provided by the randomly distributed model compared to the stacked model was revealed as the small lateral size of graphene plates in PA-6,6 matrix. As the graphene size increased, the elastic modulus of the graphene dramatically increased, directly improving the elastic modulus of the nanocomposite. The developed computational approach is highly useful to estimate the boundaries of stiffness enhancement provided by graphene dispersions in macroscale nanocomposite samples.en_US
dc.description.sponsorshipHigh-Performance Computing Laboratory of Ozyegin University ; TÜBİTAK
dc.identifier.doi10.1016/j.mtcomm.2023.105636en_US
dc.identifier.issn2352-4928en_US
dc.identifier.scopus2-s2.0-85148036123
dc.identifier.urihttp://hdl.handle.net/10679/8736
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2023.105636
dc.identifier.volume35en_US
dc.identifier.wos001009026400001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofMaterials Today Communications
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywords6en_US
dc.subject.keywordsElastic modulusen_US
dc.subject.keywordsGrapheneen_US
dc.subject.keywordsMD simulationen_US
dc.subject.keywordsPolyamide-6en_US
dc.subject.keywordsPolymer nanocompositeen_US
dc.titleCombining tensile test results with atomistic predictions of elastic modulus of graphene/polyamide-6,6 nanocompositesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: