Publication:
Database for CO2 separation performances of MOFs based on computational materials screening

dc.contributor.authorAltintas, C.
dc.contributor.authorAvci, G.
dc.contributor.authorDaglar, H.
dc.contributor.authorAzar, A. N. V.
dc.contributor.authorVelioglu, S.
dc.contributor.authorFındıkçı, İlknur Eruçar
dc.contributor.authorKeskin, S.
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorFINDIKÇI, Ilknur Eruçar
dc.date.accessioned2018-09-03T08:58:24Z
dc.date.available2018-09-03T08:58:24Z
dc.date.issued2018-05-23
dc.description.abstractMetal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom < pore-limiting diameter < 5 angstrom, 5 angstrom < largest cavity diameter < 7.5 angstrom, 0.5 < phi < 0.75, surface area < 1000 m(2)/g, and rho > 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.
dc.description.sponsorshipEuropean Research Council
dc.identifier.doi10.1021/acsami.8b04600
dc.identifier.endpage17268
dc.identifier.issn1944-8244
dc.identifier.issue20
dc.identifier.scopus2-s2.0-85046693749
dc.identifier.startpage17257
dc.identifier.urihttp://hdl.handle.net/10679/5930
dc.identifier.urihttps://doi.org/10.1021/acsami.8b04600
dc.identifier.volume10
dc.identifier.wos000433404100037
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherAmerican Chemical Society
dc.relation.ispartofACS Applied Materials & Interfaces
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7/756489-COSMOS
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsopenAccess
dc.subject.keywordsCarbon dioxide capture
dc.subject.keywordsFlue gas separation
dc.subject.keywordsLandfill gas separation
dc.subject.keywordsMOF
dc.subject.keywordsMolecular simulations
dc.subject.keywordsSelectivity
dc.titleDatabase for CO2 separation performances of MOFs based on computational materials screening
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Database for CO2 separation performances of MOFs based on computational materials screening.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: