Publication: Variable ankle stiffness improves balance control: experiments on a bipedal exoskeleton
Loading...
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Access
openAccess
Publication Status
published
Abstract
This paper proposes a real-time balance control technique that can be implemented to bipedal robots (exoskeletons, humanoids) whose ankle joints are powered via variable physical stiffness actuators. To achieve active balancing, an abstracted biped model, torsional spring-loaded flywheel, is utilized to capture approximated angular momentum and physical stiffness, which are of importance in postural balancing. In particular, this model enables us to describe the mathematical relation between zero moment point (ZMP) and physical stiffness. The exploitation of variable physical stiffness leads to the following contributions: 1) Variable physical stiffness property is embodied in a legged robot control task, for the first time in the literature to the authors' knowledge. 2) Through experimental studies conducted with our bipedal exoskeleton, the advantages of variable physical stiffness strategy are demonstrated with respect to the optimal constant stiffness strategy. The results indicate that the variable stiffness strategy provides more favorable results in terms of external disturbance dissipation, mechanical power reduction, and ZMP/center of mass position regulation.
Date
2016-02
Publisher
IEEE
Description
Due to copyright restrictions, the access to the full text of this article is only available via subscription.