Publication:
Variable ankle stiffness improves balance control: experiments on a bipedal exoskeleton

dc.contributor.authorUğurlu, Regaip Barkan
dc.contributor.authorDoppmann, C.
dc.contributor.authorHamaya, M.
dc.contributor.authorForni, P.
dc.contributor.authorTeramae, T.
dc.contributor.authorNoda, T.
dc.contributor.authorMorimoto, J.
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorUĞURLU, Regaip Barkan
dc.date.accessioned2016-02-17T11:05:46Z
dc.date.available2016-02-17T11:05:46Z
dc.date.issued2016-02
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractThis paper proposes a real-time balance control technique that can be implemented to bipedal robots (exoskeletons, humanoids) whose ankle joints are powered via variable physical stiffness actuators. To achieve active balancing, an abstracted biped model, torsional spring-loaded flywheel, is utilized to capture approximated angular momentum and physical stiffness, which are of importance in postural balancing. In particular, this model enables us to describe the mathematical relation between zero moment point (ZMP) and physical stiffness. The exploitation of variable physical stiffness leads to the following contributions: 1) Variable physical stiffness property is embodied in a legged robot control task, for the first time in the literature to the authors' knowledge. 2) Through experimental studies conducted with our bipedal exoskeleton, the advantages of variable physical stiffness strategy are demonstrated with respect to the optimal constant stiffness strategy. The results indicate that the variable stiffness strategy provides more favorable results in terms of external disturbance dissipation, mechanical power reduction, and ZMP/center of mass position regulation.
dc.description.sponsorshipStrategic Research Program for Brain Science of Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan ; New Energy and Industrial Technology Development Organization (NEDO) ; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) Ministry of Internal Affairs and Communications entitled "Novel and innovative R&D making use of brain structures" ; JST-SICP ; MIC-SCOPE ; JSPS-MIZS: Japan-Slovenia Research Cooperative Program
dc.description.versionPost print
dc.identifier.doi10.1109/TMECH.2015.2448932
dc.identifier.endpage87
dc.identifier.issn1083-4435
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84961909502
dc.identifier.startpage79
dc.identifier.urihttp://hdl.handle.net/10679/2880
dc.identifier.urihttps://doi.org/10.1109/TMECH.2015.2448932
dc.identifier.volume21
dc.identifier.wos000372013900010
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherIEEE
dc.relation.ispartofIEEE/ASME Transactions on Mechatronics
dc.rightsopenAccess
dc.subject.keywordsActuators
dc.subject.keywordsHumanoid robots
dc.subject.keywordsLegged locomotion
dc.subject.keywordsMotion control
dc.subject.keywordsPosition control
dc.titleVariable ankle stiffness improves balance control: experiments on a bipedal exoskeletonen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Variable ankle stiffness improves balance control experiments on a bipedal exoskeleton_Post print.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description: