Publication:
Using machine learning tools for forecasting natural gas consumption in the province of Istanbul

dc.contributor.authorBeyca, Ö. F.
dc.contributor.authorErvural, B. C.
dc.contributor.authorTatoglu, E.
dc.contributor.authorÖzuyar, Pınar Gökçin
dc.contributor.authorZaim, S.
dc.contributor.departmentEntrepreneurship
dc.contributor.ozuauthorÖZUYAR, Pinar
dc.date.accessioned2020-09-03T08:05:08Z
dc.date.available2020-09-03T08:05:08Z
dc.date.issued2019-05
dc.description.abstractCommensurate with unprecedented increases in energy demand, a well-constructed forecasting model is vital to managing energy policies effectively by providing energy diversity and energy requirements that adapt to the dynamic structure of the country. In this study, we employ three alternative popular machine learning tools for rigorous projection of natural gas consumption in the province of Istanbul, Turkey's largest natural gas-consuming mega-city. These tools include multiple linear regression (MLR), an artificial neural network approach (ANN) and support vector regression (SVR). The results indicate that the SVR is much superior to ANN technique, providing more reliable and accurate results in terms of lower prediction errors for time series forecasting of natural gas consumption. This study could well serve a useful benchmarking study for many emerging countries due to the data structure, consumption frequency, and consumption behavior of consumers in various time-periods.en_US
dc.identifier.doi10.1016/j.eneco.2019.03.006en_US
dc.identifier.endpage949en_US
dc.identifier.issn0140-9883en_US
dc.identifier.scopus2-s2.0-85063114902
dc.identifier.startpage937en_US
dc.identifier.urihttp://hdl.handle.net/10679/6883
dc.identifier.urihttps://doi.org/10.1016/j.eneco.2019.03.006
dc.identifier.volume80en_US
dc.identifier.wos000474681100068
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofEnergy Economics
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsNatural gas forecastingen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsArtificial neural networken_US
dc.subject.keywordsSupport vector regressionen_US
dc.subject.keywordsEmerging countriesen_US
dc.subject.keywordsIstanbulen_US
dc.titleUsing machine learning tools for forecasting natural gas consumption in the province of Istanbulen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication1a561d72-1f35-41e8-b2ff-a521d37d747d
relation.isOrgUnitOfPublication.latestForDiscovery1a561d72-1f35-41e8-b2ff-a521d37d747d

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: