Person:
ELDEEB, Hossien Badr Hossien

Loading...
Profile Picture

Email Address

Birth Date

WoSScopusGoogle ScholarORCID

Name

Job Title

First Name

Hossien Badr Hossien

Last Name

ELDEEB

Publication Search Results

Now showing 1 - 10 of 23
  • Placeholder
    Conference paperPublication
    Performance investigation of streetlight-to-vehicle visible light communication
    (IEEE, 2023) Eldeeb, Hossıen Badr; Elamassie, Mohammed; Muhaidat, S.; Uysal, Murat; Ho, T. D.; Electrical & Electronics Engineering; ELDEEB, Hossien Badr Hossien; ELAMASSIE, Mohammed; UYSAL, Murat
    This paper investigates streetlight-to-vehicle visible light communication (VLC) system performance for outdoor broadcasting applications. We adopt streetlight lamps as optical internet-of-thing (IoT) devices broadcasting internet services and safety messages to road vehicles. With their asymmetrical radiation patterns, Streetlight antennas are exceedingly different from indoor lighting modules, which deploy ceiling luminaries with ideal Lambertian ones. Therefore, a realistic channel modelling for streetlight-to-vehicle VLC system should be deployed for precise performance insights. We consider a streetlight-to-vehicle VLC system in a two-lane road with multiple light poles uniformly distributed on both sides. Based on that, we investigate the system performance of the streetlight-to-vehicle VLC system in terms of the bit-error-rate (BER) and outage distance and explore the effect of different transceivers and system parameters on the performance. These consider the transmission modulation order, receiver size, height of the streetlight poles, and their corresponding intermediate distances.
  • ArticlePublicationOpen Access
    Optimal resource allocation and interference management for multi-user uplink light communication systems with angular diversity technology
    (IEEE, 2020) Eldeeb, Hossıen Badr; Hosney, M.; Elsayed, H. M.; Badr, R. I.; Uysal, Murat; Selmy, H. A. I.; Electrical & Electronics Engineering; UYSAL, Murat; ELDEEB, Hossien Badr Hossien
    Light communication (LC) technology has been regarded as a promising candidate for future indoor wireless networks by providing safe, power-efficient, and high data rate communications needed for tomorrow's applications. Both visible light (VL) and infrared (IR) wavelengths can be utilized to design LC systems. It is often proposed that VL can be used to offload downlink traffic while near-IR is typically used in the uplink. In this paper, the uplink multi-user LC system is considered where the system performance is degraded by both inter-symbol interference (ISI) resulting from multipath reflections and inter-user interference (IUI) coming from neighboring users. To mitigate these limitations, an optimal fair resource allocation (OFRA) scheme is proposed which aims to improve the fairness among the users in terms of their received signal to interference plus noise ratios (SINRs) by implementing the angle diversity technology. Precisely, by assigning an ON/OFF state for each LED of the angle diversity transmitter (ADT), used by each user, the IUI can be significantly reduced. Also, the angle diversity receiver (ADR) is used to effectively mitigate the effects of ISI. The allocation matrix which achieves the highest fairness between different users is obtained for different scenarios of user distribution. Toward this, the exhaustive search (ES) method is used to obtain the optimal solution for the optimization problem under consideration. However, to reduce the time complexity of ES method, a quasi-optimal solution called sub-optimal fair resource allocation scheme SFRA is proposed. The sub-optimal solution is based on the genetic algorithm (GA) scheme. The simulation results reveal that both the OFRA and SFRA achieve almost the same performance. Moreover, the simulation results indicate the superior performance of the proposed OFRA scheme over the conventional single transmitter (ST) one.
  • Placeholder
    Conference paperPublication
    A flexible OLED VLC system for an office environment
    (IEEE, 2020) Chaleshtori, Z. N.; Zvanovec, S.; Ghassemlooy, Z.; Eldeeb, Hossıen Badr; Uysal, Murat; Electrical & Electronics Engineering; ELDEEB, Hossien Badr Hossien; UYSAL, Murat
    The potential use of flexible substrate-based organic light emitting diodes (OLEDs) as curved or rolled lighting sources offers news opportunities for the implementation of visible light communications (VLC) in indoor environments. This paper outlines the use of such a system in a furnished office and investigates the impact of the beam pattern of OLED, which is symmetrical and wider than Lambertian, on the VLC system. We present new results of the VLC system performance in terms of the root-mean-square delay spread and the bit error rate (BER) for the link using both flat and half-circular OLEDs. We demonstrate a data rate of 4 Mb/s using both the curved and flat OLEDs for the transmitter's half-angle within the range of ±90° and ±53°, respectively with a BER below the forward error correction BER limit.
  • Placeholder
    Conference paperPublication
    Vehicle-to-infrastructure visible light communications: Channel modelling and capacity calculations
    (IEEE, 2020) Eldeeb, Hossıen Badr; Elamassie, Mohammed; Uysal, Murat; Electrical & Electronics Engineering; ELAMASSIE, Mohammed; UYSAL, Murat; ELDEEB, Hossien Badr Hossien
    In this paper, we investigate the performance of a visible light communication (VLC) system for vehicle-to-infrastructure (V2I) connectivity. Two headlamps of the vehicle serve as wireless transmitters while photodetectors located within the traffic light pole act as wireless receivers. We use non-sequential ray-tracing approach to obtain optical channel impulse responses (CIRs) for the V2I scenario under consideration assuming different positions of the vehicle within the road. Based on the CIRs to model propagation environment as well as the effects of LED non-linear characteristics, we calculate the achievable signal-to-noise ratio and achievable data rates for VLC-based V2I systems.
  • Placeholder
    Conference paperPublication
    Distributed MIMO for Li-Fi: Channel measurements, ray tracing and throughput analysis
    (IEEE, 2021-08-15) Eldeeb, Hossıen Badr; Mana, S. M.; Jungnickel, V.; Hellwig, P.; Hilt, J.; Uysal, Murat; Electrical & Electronics Engineering; ELDEEB, Hossien Badr Hossien; UYSAL, Murat
    LiFi has been considered as a promising candidate for future wireless indoor networks. The IEEE P802.15.13 and P802.11bb standardization groups agreed upon channel models generated using the non-sequential ray tracing approach of OpticStudio. In this paper, in order to validate the channel modelling approach, at first 2 × 2 multiple-input multiple-output (MIMO) channel measurements are carried out over 200 MHz bandwidth using a channel sounder. The experimental scenario is also modeled in 3D by applying ray tracing. The obtained results indicate good agreement between simulations and measured channel impulse responses, from which parameters such as path loss and delay spread are derived. After validating the channel modeling approach, we investigate the singular values and the effect of user mobility onto the performance in a 4× 4 distributed multi-user MIMO scenario.
  • Placeholder
    Conference paperPublication
    Analysis of communication distance and energy harvesting for vehicular VLC using commercial taillights
    (IEEE, 2023) Refas, S.; Acheli, D.; Yahia, S.; Meraihi, Y.; Eldeeb, Hossıen Badr; Dac Ho, T.; Jiang, L.; Shimamoto, S.; Electrical & Electronics Engineering; ELDEEB, Hossien Badr Hossien
    This paper presents an investigation into the communication range and energy harvesting capabilities of a vehicle-to-vehicle (V2V) visible light communication (VLC) system that utilizes commercial taillights (TLs) as wireless transmitters and a single photodetector (PD) as the wireless receiver. First, We derived a closed-form expression for the distance and the harvested energy using realistic ray-tracing channel models that consider the asymmetrical pattern of commercial car taillights. Then, analyze the impact of various transceivers and system parameters on the overall performance of the V2V VLC system. Our findings demonstrated that the proposed V2V VLC system could achieve a communication range of more than 50 m at a BER threshold of 10-3 for low data rate applications (i.e., safety) and more than 30 m for higher data rate application at same BER target. Our results further reveal that an energy harvesting of 4.5 mJ can be achieved when the BER performance is kept at 10-6, making it a promising solution for low-power wireless communication in V2V VLC scenarios. Moreover, the results have shown that the harvested energy can be affected by parameters such as the BER, bandwidth, and electrical transmitting power, which emphasizes the importance of optimizing these parameters for optimal harvesting energy. Overall, this paper provides valuable insights into the potential of V2V VLC systems for energy-efficient communication in vehicular communications
  • Placeholder
    ArticlePublication
    Channel modelling and performance limits of vehicular visible light communication systems
    (IEEE, 2020-07) Karbalayghareh, M.; Miramirkhani, F.; Eldeeb, Hossıen Badr; Kızılırmak, R. Ç.; Sait, S.Q.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; ELDEEB, Hossien Badr Hossien
    Visible light communication (VLC) has been proposed as an alternative or complementary technology to radio frequency vehicular communications. Front and back vehicle lights can serve as wireless transmitters making VLC a natural vehicular connectivity solution. In this paper, we evaluate the performance limits of vehicular VLC systems. First, we use non-sequential ray tracing to obtain the channel impulse responses (CIRs) for vehicle-to-vehicle (V2V) link in various weather conditions. Based on these CIRs, we present a closed-form path loss expression which builds upon the summation of geometrical loss and attenuation loss and takes into account asymmetrical patterns of vehicle light sources and geometry of V2V transmission. The proposed expression is an explicit function of link distance, lateral shift between two vehicles, weather type (quantified by the extinction coefficient), transmitter beam divergence angle and receiver aperture diameter. Then, we utilize this expression to determine the maximum achievable link distance of V2V systems for clear, rainy and foggy weather conditions while ensuring a targeted bit error rate.
  • Placeholder
    Conference paperPublication
    Is visible light communications suitable for using in lane-changing maneuvers?
    (IEEE, 2023) Meghraoui, A.; Tayebi, M. L.; Besseghier, M.; Yahia, S.; Eldeeb, Hossıen Badr; Vo, V. N.; Ho, T. D.; Electrical & Electronics Engineering; ELDEEB, Hossien Badr Hossien
    Lane-changing behaviour is a crucial aspect of driving that requires a safe and efficient driving environment. To achieve this, an accurate perception of the surrounding vehicles and environment is essential, enabling the vehicle to make informed lane-changing decisions and ultimately improving the process's reliability and success rate. This paper uses a non-sequential ray channel modelling approach to investigate visible light communication (VLC) in lane change applications. The vehicle's headlamps and taillights act as wireless transmitters, while photo-detectors on other vehicles act as wireless receivers. The system performance is evaluated in terms of bit error rate (BER), spectral efficiency, and packet delivery ratio (PDR) for different inter-vehicle distances and lateral shifts. The effect of vehicle velocity on the system performance is also investigated. The results demonstrated that VLC could be qualified for exchanging data between the cars for a safe lane change. It also showed significant vehicle position and velocity impacts on the system performance during this process.
  • Placeholder
    Conference paperPublication
    Experimental investigation of lens combinations on the performance of vehicular VLC
    (IEEE, 2020) Mohamed, Bassam Aly Abdelrahman; Elamassie, Mohammed; Eldeeb, Hossıen Badr; Uysal, Murat; Electrical & Electronics Engineering; ELAMASSIE, Mohammed; ELDEEB, Hossien Badr Hossien; UYSAL, Murat; Mohamed, Bassam Aly Abdelrahman
    With the increasing adoption of LEDs in outdoor light sources such as traffic lights, street lights and vehicle headlamps, visible light communication (VLC) has the promise to become a major enabler for vehicle-to-vehicle and vehicle-to-infrastructure communications. In this paper, we experimentally investigate the effect of using different lens combinations on vehicular VLC systems in outdoor environments. First, we measure the effective channel coefficient which includes the effect of both front-ends and propagation channel. Then, based on the estimated channel coefficients, we characterize the vehicular system performance in terms of signal-to-noise ratio and quantify improvements from utilizing different lens combinations.
  • Placeholder
    Conference paperPublication
    Channel modelling for light communications: Validation of ray tracing by measurements
    (IEEE, 2020) Eldeeb, Hossıen Badr; Uysal, Murat; Mana, S. M.; Hellwig, P.; Hilt, J.; Jungnickel, V.; Electrical & Electronics Engineering; ELDEEB, Hossien Badr Hossien; UYSAL, Murat
    Light communications, also denoted as LiFi, is promising for future wireless indoor networks. For performance evaluation, the IEEE P802.15.13 and P802.11bb standardization groups agreed upon channel models based on non-sequential ray tracing. In this paper, we validate the modeling approach behind by means of measurements. The same indoor scenarios, where measurements took place in 200 MHz bandwidth, have been modeled in 3D and applying ray tracing. We show that the mean-square error between simulation and measurement is below 2%. Finally, we investigate important channel parameters like path loss and coherence bandwidth as a function of distance with and without line-of-sight.