Interior Architecture and Environmental Design
Permanent URI for this collectionhttps://hdl.handle.net/10679/311
Browse
Browsing by Subject "Computational design"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
ArticlePublication Metadata only Building in extraterrestrial environments: t-brick shell(American Society of Civil Engineers, 2018-03) Yazıcı, Sevil; Interior Architecture and Environmental Design; YAZICI, SevilSpace exploration focuses on new technologies to search the unknown. It has been used to investigate possibilities for the creation of human colonies in extraterrestrial environments. Current projects concerning space architecture reflect two perspectives that differ from highly rationalized engineering solutions in that they are highly conceptual and abstract approaches. Although implemented for extraterrestrial environments, new technologies do not offer a comprehensive approach from an architecture perspective that can be implemented for different design and programmatic purposes by the use of in situ materials on Mars. This paper aims to propose a comprehensive approach in which the form generation process is driven by environmental conditions, specifically the dune fields on Mars. A set of architectural geometry, described computationally, can respond to different spatial conditions, such as shell structures, from fully enclosed to semiopen surfaces. In this approach, in situ materials are used with robotic fabrication; more specifically, three-dimensional (3D) printing is used on Martian land. A material system, which creates a titanium-dioxide-based shielding layer, was developed against high radiation levels on the Martian surface. The interconnected structural modules were considered similar to the brick material called T-brick. The system was assessed structurally by selecting an enclosed geometry: a dome structure. Hence, the efficiency factor was calculated. The results proved that the proposed T-brick shell is an efficient solution considering the payload constraints of the system. The method can be potentially implemented on Earth and extraterrestrial environments in addition to Mars. (C) 2017 American Society of Civil Engineers.Conference ObjectPublication Metadata only A course on biomimetic design strategies(Ecaade-Education & Research Computer Aided Architectural Design Europe, 2015) Yazıcı, Sevil; Interior Architecture and Environmental Design; YAZICI, SevilAlthough redesigning curricula by integrating the CAD tools into architectural education has been an ongoing interest, a new understanding towards solving design problems holistically should be investigated in architectural education. Because natural systems offer design strategies to increase performance and effectiveness with an extensive formal repertoire; incorporating multi-faceted biomimetic principles into the design process is necessary. It is critical to increase skills of students towards algorithmic thinking, as well as to deal with performance issues and sustainability. This paper aims to discuss an undergraduate elective course titled "Sustainable Design and Environment through Biomimicry" which was taught by the author in architectural degree program of Ozyegin University Faculty of Architecture and Design in Fall 2014-2015. Following the exploration of individual research topics, findings were implemented into design problems. The challenges encountered in the teaching process and future lines of the work are discussed in the paper.ArticlePublication Metadata only Material-based computational design (MCD) in sustainable architecture(Elsevier, 2020-11) Yazıcı, Sevil; Tanacan, L.; Interior Architecture and Environmental Design; YAZICI, SevilToday material is the driving force in architectural design processes run by Computational Design (CD). The architect may lead the design process and its outputs by analysing material type and properties, as well as constraints, at the beginning of the process. This article reviews the state of the art in Material-based Computational Design (MCD) and aims to analyse the role of materials in efficient and sustainable MCD processes. A set of critical projects developed over the past decade have been selected and grouped based on how material is incorporated into the process. In the process, three main categories are identified namely, Material Performance, Informed Materials and Programming Materials. Based on predefined criteria on efficiency (E) and sustainability (S) in architectural design processes, the projects are analysed to calculate their E + S ratings. The analysis identifies two principal approaches implemented in MCD. One focuses on integrating material properties with other critical parameters including form, performance and fabrication. The other concerns enhancing material properties by designing new materials. The analysis verifies that MCD generates both efficient and sustainable design solutions. By using CD in architectural design processes, existing materials can be reinterpreted and innovative materials can be produced to achieve new spatial experiences and meanings.ArticlePublication Metadata only Rule-based rationalization of form: learning by computational making(Springer Nature, 2020-07) Yazıcı, Sevil; Interior Architecture and Environmental Design; YAZICI, SevilDigital design and fabrication tools obtain constraints affecting creativity in conceptual design phase. There is a necessity to have a better understanding of issues related to the rationalization process of form, material and fabrication. The objective of this paper is to integrate analogue craft into architectural design studio that can be applicable into various educational setups, in order to increase the algorithmic thinking skills of students, before giving tutorials on the software tools and digital fabrication techniques. The Rule-based Rationalization of Form (RRF) was implemented as a task for a mobile unit design through computational making. The research methodology of RRF consists of four stages, including specifying the design constraints and the rules; the design of the components and the overall form; making the large-scale mock-up; and process evaluation. It was implemented to the second year undergraduate architectural design studios from Fall 2014 to 2016. The data were collected by the process analysis and questionnaire applied to the participants. The output studies were grouped in three, as Modular, Folding and Biomimetic design systems, based on the geometrical characteristics and organizational principles applied in the process. In the light of research objective, algorithmic thinking skills of students were developed through analogue craft, as well as participants obtained a better understanding of issues related to the rationalization process of form, material and fabrication, by testing relationships between the geometry, tools and the materials.