Interior Architecture and Environmental Design
Permanent URI for this collectionhttps://hdl.handle.net/10679/311
Browse
Browsing by Subject "Architectural design"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Metadata only Material-based computational design (MCD) in sustainable architecture(Elsevier, 2020-11) Yazıcı, Sevil; Tanacan, L.; Interior Architecture and Environmental Design; YAZICI, SevilToday material is the driving force in architectural design processes run by Computational Design (CD). The architect may lead the design process and its outputs by analysing material type and properties, as well as constraints, at the beginning of the process. This article reviews the state of the art in Material-based Computational Design (MCD) and aims to analyse the role of materials in efficient and sustainable MCD processes. A set of critical projects developed over the past decade have been selected and grouped based on how material is incorporated into the process. In the process, three main categories are identified namely, Material Performance, Informed Materials and Programming Materials. Based on predefined criteria on efficiency (E) and sustainability (S) in architectural design processes, the projects are analysed to calculate their E + S ratings. The analysis identifies two principal approaches implemented in MCD. One focuses on integrating material properties with other critical parameters including form, performance and fabrication. The other concerns enhancing material properties by designing new materials. The analysis verifies that MCD generates both efficient and sustainable design solutions. By using CD in architectural design processes, existing materials can be reinterpreted and innovative materials can be produced to achieve new spatial experiences and meanings.ArticlePublication Metadata only Rule-based rationalization of form: learning by computational making(Springer Nature, 2020-07) Yazıcı, Sevil; Interior Architecture and Environmental Design; YAZICI, SevilDigital design and fabrication tools obtain constraints affecting creativity in conceptual design phase. There is a necessity to have a better understanding of issues related to the rationalization process of form, material and fabrication. The objective of this paper is to integrate analogue craft into architectural design studio that can be applicable into various educational setups, in order to increase the algorithmic thinking skills of students, before giving tutorials on the software tools and digital fabrication techniques. The Rule-based Rationalization of Form (RRF) was implemented as a task for a mobile unit design through computational making. The research methodology of RRF consists of four stages, including specifying the design constraints and the rules; the design of the components and the overall form; making the large-scale mock-up; and process evaluation. It was implemented to the second year undergraduate architectural design studios from Fall 2014 to 2016. The data were collected by the process analysis and questionnaire applied to the participants. The output studies were grouped in three, as Modular, Folding and Biomimetic design systems, based on the geometrical characteristics and organizational principles applied in the process. In the light of research objective, algorithmic thinking skills of students were developed through analogue craft, as well as participants obtained a better understanding of issues related to the rationalization process of form, material and fabrication, by testing relationships between the geometry, tools and the materials.