Faculty of Engineering
Permanent URI for this communityhttps://hdl.handle.net/10679/10
Browse
Browsing by By Publication Category "International"
Now showing 1 - 20 of 224
- Results Per Page
- Sort Options
Conference ObjectPublication Open Access 3-D dynamic walking trajectory generation for a bipedal exoskeleton with underactuated legs: A proof of concept(IEEE, 2019-06) Soliman, Ahmed Fahmy; Şendur, Polat; Uğurlu, Regaip Barkan; Mechanical Engineering; ŞENDUR, Polat; UĞURLU, Regaip Barkan; Soliman, Ahmed FahmyThis paper presents a framework to address three dimensional (3-D) dynamic walking for a bipedal exoskeleton with underactuated legs. To achieve this goal, the framework is constructed via a trajectory generator and an optimized inverse kinematics algorithm that can cope with underactuation. In order to feasibly attain task velocities with underactuated legs, the inverse kinematics algorithm makes use of a task prioritization method via the exploitation of null space. In doing so, the tasks with lower priority, e.g., swing foot orientation, are attained as much as possible without disrupting the higher priority tasks, such as CoM trajectory. Meanwhile, the trajectory generator utilizes the ZMP concept analytically and ensures the acceleration continuity throughout the whole walking period, regardless of the contact and phase changes. The proposed method is verified via a lumped human-bipedal exoskeleton model that is developed and simulated in MSC.ADAMS simulation environment. As a result, we obtained feasible and dynamically balanced 3-D walking motion, in which no oblique foot landing or exaggerated torso orientation variations were observed, despite the underactuated nature of the robot legs.Conference ObjectPublication Metadata only 3B kamera takibi için eylemsizlik algılayıcılarının birleştirilmesi(IEEE, 2012) Özer, N.; Erdem, Tanju; Ercan, Ali Özer; Eroğlu Erdem, Ç.; Electrical & Electronics Engineering; Computer Science; ERDEM, Arif Tanju; ERCAN, Ali ÖzerIt is well known in a Bayesian filtering framework, the use of inertial sensors such as accelerometers and gyroscopes improves 3D tracking performance compared to using camera measurements only. The performance improvement is more evident when the camera undergoes a high degree of motion. However, it is not well known whether the inertial sensors should be used as control inputs or as measurements. In this paper, we present the results of an extensive set of simulations comparing different combinations of using inertial sensors as control inputs or as measurements. We show that it is better use a gyroscope as a control input while an accelerometer can be used as a measurement or control input. We also derive and present the extended Kalman filter (EKF) equations for a specific case of fusing accelerometer and gyroscope data that has not been reported before.Conference ObjectPublication Metadata only Adaptive DCO-OFDM for underwater visible light communications(IEEE, 2019-04) Elamassie, Mohammed; Karbalayghareh, Mehdi; Miramirkhani, Farshad; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Elamassie, Mohammed; Karbalayghareh, Mehdi; Miramirkhani, FarshadVisible light communication (VLC) has been introduced as a complementary technology to acoustic communications for underwater applications. Underwater VLC can achieve much higher data rates sufficiently high for real-time image and video transmission. Such high data rates over underwater channels with frequency-selectivity necessitate the use of efficient multi-carrier techniques such as orthogonal frequency division multiplexing. In this paper, we consider an adaptive DC-biased optical OFDM (DCO-OFDM) underwater VLC system. The design of adaptive algorithm is formulated to maximize the throughput under error rate performance constraints. The receiver first calculates the signal-to-noise ratio (SNR) per each subcarrier. Then, based on SNR information, it determines which subcarrier should be loaded first and selects the maximum constellation size for each subcarrier while satisfying a predefined targeted bit error rate (BER). Our simulation results demonstrated that significant improvements in throughput can be obtained through link adaptation.Conference ObjectPublication Metadata only An adaptive modulation scheme for coded free-space optical systems(IEEE, 2014) Hariq, S. H.; Odabasioglu, N.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, MuratFor very slowly-varying fading channels as in the case of atmospheric turbulence-induced fading, it is possible to reliably estimate the channel state information and send it back to the transmitter. The transmitter can use this information to vary the transmission parameters such as power, modulation size, code rate etc according to the channel conditions. This is known as link adaptation. In this paper, we consider a turbo-coded free-space optical (FSO) system with M-ary pulse position modulation over log-normal turbulence channels and propose an adaptive modulation scheme under peak power constraints. Our simulation results demonstrate significant performance improvements of the proposed adaptive scheme over non-adaptive counterparts.Conference ObjectPublication Metadata only Adaptive relay selection method for asynchronous amplify and forward cooperative communications(IEEE, 2016) Celik, Y.; Odabasioglu, N.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, MuratIn this paper, we propose a new adaptive relay selection method named as Adaptive Best Relay Assessment (ABRA) for cooperative communication with amplify and forward (AF) relaying. ABRA is based on two relay selection criteria which are cascaded channel gain coefficient and cascaded time offset in source-relay-destination (S-R-D) channel. Our simulation results demonstrate that the channel gain coefficient is the best criteria at low signal-to-noise ratio (SNR) regimes and time offset at high SNR regimes. Therefore, we combine these two criteria to select best relay for all SNR values. Finally, ABRA achieves the best bit error rate (BER) performance in asynchronous AF cooperative communications for three different path gain ratios 30 dB, 0 dB, and -30 dB.Conference ObjectPublication Metadata only Adaptive shared control with human intention estimation for human agent collaboration(IEEE, 2022) Amirshirzad, Negin; Uğur, E.; Bebek, Özkan; Öztop, Erhan; Computer Science; Mechanical Engineering; BEBEK, Özkan; ÖZTOP, Erhan; Amirshirzad, NeginIn this paper an adaptive shared control frame-work for human agent collaboration is introduced. In this framework the agent predicts the human intention with a confidence factor that also serves as the control blending parameter, that is used to combine the human and agent control commands to drive a robot or a manipulator. While performing a given task, the blending parameter is dynamically updated as the result of the interplay between human and agent control. In a scenario where additional trajectories need to be taught to the agent, either new human demonstrations can be generated and given to the learning system, or alternatively the aforementioned shared control system can be used to generate new demonstrations. The simulation study conducted in this study shows that the latter approach is more beneficial. The latter approach creates improved collaboration between the human and the agent, by decreasing the human effort and increasing the compatibility of the human and agent control commands.Conference ObjectPublication Metadata only Adaptive unipolar MIMO-OFDM for visible light communications(IEEE, 2019) Al-Nahhal, Mohamed; Basar, E.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Al-Nahhal, MohamedUnipolar orthogonal frequency division multiplexing (U-OFDM) appears as an attractive optical OFDM solution for emerging visible light communication (VLC) systems. This paper proposes spectral efficiency improvement for U-OFDM systems by applying adaptive transmission over realistic VLC links. This adaptive transmission includes switching among a number of multiple-input multiple-output (MIMO) modes combined with appropriate modulation size selection. The considered MIMO modes are repetition coding, spatial modulation, and spatial multiplexing, where each mode supports different modulation sizes. The selection of the corresponding MIMO mode and its modulation size is based on the received signal-to-noise ratio and target bit error rate. The proposed U-OFDM system is applied over different VLC MIMO setups with realistic channel models for 8 x 8, 4 x 4 and 2 x 2 MIMO systems. Our simulation results show that the proposed adaptive system provides a significant spectral efficiency improvement over stand-alone U-OFDM MIMO modes/setups.Conference ObjectPublication Metadata only Aerosol attenuation model for high altitude UAV-based FSO links(IEEE, 2022) Elamassie, Mohammed; Uysal, Murat; Electrical & Electronics Engineering; ELAMASSIE, Mohammed; UYSAL, MuratFree space optical (FSO) communication is well positioned to address connectivity needs in ground-UAV, inter-UAV and UAV-ground links. An accurate performance analysis of airborne FSO links requires the use of proper path loss models. While earlier studies have successfully modeled attenuation arising from rain, drizzle, fog, and snow, aerosols have received less attention. Aerosols are tiny particles suspended in the atmosphere. They can be found drifting in Earth's atmosphere from the stratosphere to the troposphere to the Earth's surface. In this paper, we conduct extensive simulations in MODTRAN to determine the extinction coefficient values for aerosol over the wavelength from 350 nm to 1550 nm including typical wavelengths (e.g., 690 nm, 780nm, 850nm, and 1550 nm) used in commercial FSO systems. Non-linear curve fitting is then used to obtain new closed-form expressions for extinction coefficients.Conference ObjectPublication Open Access Analysis of X(4140) like states and their radial excitations in QCD(Sissa Medialab Srl, 2017) Türkan, Arzu; Dağ, Hüseyin; Natural and Mathematical Sciences; TÜRKAN, Arzu; DAĞ, HüseyinIn this work, we investigated the X(4140) and like states and their radial excitations by using molecular and diquark-antidiquark currents which couple to scalar, axial vector and tensor states via QCD sum rules. In operator product expansion, we considered quark, gluon and mixed vacuum condansates up to dimension eight. For the ground states coupling to these currents, we found that masses are almost degenerate with X(4140). For the excited states, we found that scalar and tensor currents are coupling to D∗ sD∗ s threshold. However for the axial vector currents, the mass of the first excited state is compatible with X(4274). Thus we conclude that, X(4274) might be the first radial excitation of X(4140).Conference ObjectPublication Metadata only Authoring and presentation tools for distance learning over interactive TV(ACM, 2010) Gürel, T. C.; Erdem, Tanju; Kermen, A.; Özkan, M. K.; Eroğlu Erdem, Ç.; Computer Science; ERDEM, Arif TanjuWe present a complete system for distance learning over interactive TV with novel tools for authoring and presentation of lectures and exams, and evaluation of student and system performance. The main technological contributions of the paper include the development of plug-in software so that PowerPoint can be used to prepare presentations for the set-top-box, a software tool to convert PDF documents containing multiple-choice questions into interactive exams, and a virtual teacher whose facial animation is automatically generated from speech.Conference ObjectPublication Metadata only Bidding support by the pocket negotiator improves negotiation outcomes(Springer, 2023) Aydoğan, Reyhan; Jonker, C. M.; Computer Science; AYDOĞAN, ReyhanThis paper presents the negotiation support mechanisms provided by the Pocket Negotiator (PN) and an elaborate empirical evaluation of the economic decision support (EDS) mechanisms during the bidding phase of negotiations as provided by the PN. Some of these support mechanisms are offered actively, some passively. With passive support we mean that the user only gets that support by clicking a button, whereas active support is provided without prompting. Our results show, that PN improves negotiation outcomes, counters cognitive depletion, and encourages exploration of potential outcomes. We found that the active mechanisms were used more effectively than the passive ones and, overall, the various mechanisms were not used optimally, which opens up new avenues for research. As expected, the participants with higher negotiation skills outperformed the other groups, but still they benefited from PN support. Our experimental results show that people with enough technical skills and with some basic negotiation knowledge will benefit most from PN support. Our results also show that the cognitive depletion effect is reduced by Pocket Negotiator support. The questionnaire taken after the experiment shows that overall the participants found Pocket Negotiator easy to interact with, that it made them negotiate more quickly and that it improves their outcome. Based on our findings, we recommend to 1) provide active support mechanisms (push) to nudge users to be more effective, and 2) provide support mechanisms that shield the user from mathematical complexities.Conference ObjectPublication Metadata only A big data processing framework for self-healing internet of things applications(IEEE, 2016) Dundar, B.; Astekin, Merve; Aktas, M. S.; Astekin, MerveIn this study, we introduce a big data processing framework that provides self-healing capability in the Internet of Things domain. We discuss the high-level architecture of this framework and its prototype implementation. To identify faulty conditions, we utilize a complex-event processing technique by applying a rule-based pattern-detection algorithm on the events generated real-time. For events, we use a descriptor metadata of the measurements (such as CPU usage, memory usage, bandwidth usage) taken from Internet of Things devices. To understand the usability and effectiveness of the proposed architecture, we test the prototype implementation for performance and scalability under increasing incoming message rates. The results are promising, because its processing overhead is negligible.Book PartPublication Metadata only Bio-derived rheology modifying agents for cement-based materials(Springer, 2020) Azima, M.; Bundur, Zeynep Başaran; Civil Engineering; BUNDUR, Zeynep BaşaranIn recent few years, significant development has been made in concrete technology to accommodate the requirements of high-performance concrete. Rheology Modifying Agents (RMAs) (such as superplasticizers) and Viscosity Modifying Agents (VMAs) have been developed as two alternative admixtures to obtain the required workability. However, these admixtures not only increased the environmental impacts of concrete production but also increased the unit cost of concrete. Following these concerns, several studies have been focusing on exploring more sustainable approaches in concrete production such as the use of bio-based admixtures in concrete production. Throughout the literature, bio-based polysaccharides (cellulose, chitosan, etc.) were found to be highly effective as VMAs. Long chain molecules of these polysaccharides stick to the water molecules, decrease their relative motion and forms a gel, so increase the yield stress and plastic viscosity. This behaviour reduces the bleeding and segregation, which results in robust highly workable concrete. The interest in this study was motivated by the vital demand to introduce a greener and more sustainable VMA to improve the rheological properties of cement paste. To this end, bacterial cells proposed as VMAs for cement-based materials. The bacterial cells were directly incorporated into the mix of water without any additional intervention. The rheological measurements were implemented to evaluate the influence of cells on apparent viscosity and yield strength. In addition, the use of superplasticizers and fly ash on the performance of biological VMA were also investigated. Our results showed that the apparent viscosity and yield stress of the cement-paste mix were increased with the addition of the microorganisms. Moreover, bacterial cells were found to be compatible with the use of both fly ash and superplasticizers.Book PartPublication Metadata only Blood supply chain management and future research opportunities(Springer, 2018) Ekici, Ali; Özener, Okan Örsan; Göktürk, Elvin Çoban; Industrial Engineering; EKİCİ, Ali; ÖZENER, Okan Örsan; GÖKTÜRK, Elvin ÇobanIn this chapter, we discuss the challenges and research opportunities in the blood collection operations and explore the benefits of recent advances in the blood donation process. According to the regulations, donated blood has to be processed in a processing facility within 6 h of donation. This forces blood donation organizations to schedule continuous pickups from donation sites. The underlying mathematical problem is a variant of well-known Vehicle Routing Problem (VRP). The main differences are the perishability of the product to be collected, and the continuity of donations. We discuss the implications of such differences on collection routes from donation centers. Recent advances such as multicomponent apheresis (MCA) allow the donation of more than one component and/or more than one transfusable unit of each blood product. MCA provides several opportunities including (1) increasing the donor utilization, (2) tailoring the donations based on demand, and (3) reducing the infection risks in the transfusion. We also discuss MCA, its potential benefits and how to best use MCA in order to improve blood products availability and manage donation/disposal costs.Conference ObjectPublication Metadata only Büyük veri problemlerine çözüm olarak veri akış madenciliği(IEEE, 2013) Ölmezoğulları, Erdi; Arı, İsmail; Çelebi, Ö. F.; Ergüt, S.; Computer Science; ARI, Ismail; Ölmezoğulları, ErdiGünümüzde bilişim dünyası faydalı bilgiye ulaşma yolunda “büyük veri” problemleri (verinin kütlesi, hızı, çeşitliliği, tutarsızlığı) ile baş etmeye çalışmaktadır. Bu makalede, büyük veri akışları üzerinde İlişkisel Kural Madenciliği’nin (İKM) daha önce literatürde yapılmamış bir şekilde “çevrimiçi” olarak gerçeklenme detayları ile başarım bulguları paylaşılacaktır. Akış madenciliği için Apriori ile FP-Growth algoritmaları Esper isimli olay akış motoruna eklenmiştir. Elde edilen sistem üzerinde bu iki algoritma kayan penceler ve LastFM sosyal müzik sitesi verileri kullanılarak karşılaştırılmıştır. Başarımı yüksek olan FPGrowth seçilerek gerçek-zamanlı ve kural-tabanlı bir tavsiye motoru oluşturulması sağlanmıştır. En önemli bulgularımız çevrimiçi kural çıkarımı sayesinde: (1) çevrimdışı kural çıkarımından çok daha fazla kuralın (2) çok daha hızlı ve etkin olarak ve (3) çok daha önceden hesaplanabileceği gösterilmiştir. Ayrıca müzik zevklerine uygun “George Harrison⇒The Beatles” gibi pekçok ilginç ve gerçekçi kural bulunmuştur. Sonuçlarımızın ileride diğer büyük veri analitik sistemlerinin tasarım ve gerçeklemesine ışık tutacağını ummaktayız.Conference ObjectPublication Metadata only Calibration of 2D ultrasound in 3D space for robotic biopsies(IEEE, 2015) Ahmad, A.; Çavuşoğlu, M. C.; Bebek, Özkan; Mechanical Engineering; BEBEK, ÖzkanFreehand Ultrasound technique is widely used in intraoperative biopsy procedures for detecting the volumes of interest. Freehand ultrasound probe is faster and flexible with 6 degrees of freedom. Thats why the imaging system must be calibrated in 3D space before integrating it with Robotics Biopsy System. In this paper we present a 3D space calibration method using a multipoint cross-wire phantom. The Ultrasound probe is attached to a robotic manipulator arm which moves it over the phantom in precise steps of distances and angles. The position and orientation of the probe is tracked by an optical tracking system. Optical markers are placed on the probe, phantom tank and the validation needle. The optical tracking system returns the position and orientation of the reference frames attached to these optical markers. The location of threads with reference to the frame of Ultrasound probe is found using this information. These values and the values returned by a mathematical model of the calibration box are used to construct the calibration matrix. The whole system is automated so it can process high number of frames which makes it rapid and more accurate. This process is used to calibrate the space for an automated needle insertion biopsy robot. The accuracy of the system was checked by a validation needle in 3D space. RMS error of the experiment groups on average was 1.67mm.Conference ObjectPublication Metadata only Cantilever array oscillators with nonlinear optical readout(IEEE, 2015) Lüleç, S. Z.; Adiyan, U.; Yaralıoğlu, Göksen Göksenin; Leblebici, Y.; Urey, H.; Electrical & Electronics Engineering; YARALIOĞLU, Göksen GökseninMEMS array oscillators typically require a separate detector and feedback loop for each oscillator. We show that grating-based-optical-readout induces nonlinearity, which enables simultaneous operation of an array-of-oscillators using only one detector and single electronic feedback-loop.Conference ObjectPublication Open Access A capacitated mobile facility location problem with mobile demand: Recurrent service provision to en route refugees(OpenProceedings.org, 2022) Pashapour, A.; Danış, Dilek Günneç; Salman, F. S.; Yücel, E.; Industrial Engineering; DANIŞ, Dilek GünneçIn this paper, we help humanitarian organizations provide service via mobile facilities (MFs) to migrating refugees, who attempt to cross international borders. Over a planning horizon, we aim to optimize number and routes and relocations of the MFs over a planning horizon. The problem is represented on a network where several refugee groups relocate in their predetermined paths throughout the periods. To incorporate continuity of service, each refugee group should be served at least once every fixed consecutive periods via capacitated MFs. We aim to minimize the total cost, consisting of fixed, service provision, and MF relocation costs, while ensuring the service continuity requirement. We formulate a mixed integer linear programming (MILP) model for this problem. We develop a matheuristic and an accelerated Benders decomposition algorithm as an exact solution method. The proposed model and solution methods are investigated over instances we extracted from the 2020 Honduras migration crisis.Conference ObjectPublication Metadata only Capacity of wireless ad-hoc broadcast networks under realistic channel models(IEEE, 2009) Atıcı, Çağdaş; Sunay, Mehmet Oğuz; Computer Science; SUNAY, Mehmet Oğuz; Atıcı, ÇağdaşIn a wireless broadcasting scenario, some of the nodes can help the source node by forwarding the received information. Due to the interference from multiple transmissions, selection of these nodes directly affects the performance of the system under a given total power and hop constraint. In this paper, we first analytically find the number and the positions of the rebroadcasting nodes that achieve the optimal broadcast capacity under the continuum model. Following the results of this part, we propose two heuristics, one centralized and another distributed, for relay selection in practical scenarios. Then, we discuss the broadcast capacity performances of these algorithms under different system settings. The results illustrate that using a distributed relay selection method brings significant gains to the broadcast capacity under a realistic system model.Conference ObjectPublication Metadata only Centroidal momentum observer: Towards whole-body robust control of legged robots subject to uncertainties(IEEE, 2022) Oral, Dilay Yesildağ; Barkana, D. E.; Uğurlu, Regaip Barkan; Mechanical Engineering; UĞURLU, Regaip Barkan; Oral, Dilay YesildağThis paper aims to provide robust dynamic motion control and eliminate parameter uncertainty in single-legged robots with a centroidal momentum-based control algorithm. In order to ensure the continuity of the movement despite external disturbances, the disturbance observer (DOB), which is frequently used in the motion control literature, is used. A one-legged robot model was simulated using MSC ADAMS, and then a centroidal momentum-based control algorithm and Zero Moment Point (ZMP)-based control algorithm were developed. The performances of the controllers were tested in the simulation environment in line with three different scenarios, unknown load, external forces and external momentum disturbances. The controllers were evaluated by comparing the selected reference orbital positions with the center of mass (CoM) positions on the x and z axes and the ZMP positions on the x-axis. The simulation results satisfactorily validated the proposed centroidal momentum observer as it performed well in all tested conditions.