Browsing by Author "Cakmak, O."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
ArticlePublication Metadata only A cartridge based sensor array platform for multiple coagulation measurements from plasma(Royal Society of Chemistry, 2015) Cakmak, O.; Ermek, E.; Kilinc, N.; Bulut, S.; Baris, I.; Kavakli, I. H.; Yaralıoğlu, Göksen Göksenin; Urey, H.; Electrical & Electronics Engineering; YARALIOĞLU, Göksen GökseninThis paper proposes a MEMS-based sensor array enabling multiple clot-time tests for plasma in one disposable microfluidic cartridge. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge. This enables simple and low-cost cartridge designs and avoids reliability problems associated with electrical connections. The cartridge consists of microfluidic channels and MEMS microcantilevers placed in each channel. The microcantilevers are made of electroplated nickel. They are actuated remotely using an external electro-coil and the read-out is also conducted remotely using a laser. The phase difference between the cantilever oscillation and the coil drive is monitored in real time. During coagulation, the viscosity of the blood plasma increases resulting in a change in the phase read-out. The proposed assay was tested on human and control plasma samples for PT and aPTT measurements. PT and aPTT measurements from control plasma samples are comparable with the manufacturer's datasheet and the commercial reference device. The measurement system has an overall 7.28% and 6.33% CV for PT and aPTT, respectively. For further implementation, the microfluidic channels of the cartridge were functionalized for PT and aPTT tests by drying specific reagents in each channel. Since simultaneous PT and aPTT measurements are needed in order to properly evaluate the coagulation system, one of the most prominent features of the proposed assay is enabling parallel measurement of different coagulation parameters. Additionally, the design of the cartridge and the read-out system as well as the obtained reproducible results with 10 μl of the plasma samples suggest an opportunity for a possible point-of-care application.Conference paperPublication Metadata only Disposable cartridge biosensor platform for portable diagnostics(SPIE , 2017) Yaras, Y. S.; Cakmak, O.; Gunduz, A. B.; Saglam, G.; Olcer, S.; Mostafazadeh, A.; Baris, I.; Civitci, F.; Yaralıoğlu, Göksen Göksenin; Urey, H.; Electrical & Electronics Engineering; YARALIOĞLU, Göksen GökseninWe developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer’s datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.Conference paperPublication Metadata only LoC sensor array platform for real-time coagulation measurements(IEEE, 2014) Cakmak, O.; Kılınç, N.; Ermek, E.; Mostafazadeh, A.; Elbuken, Ç.; Yaralıoğlu, Göksen Göksenin; Urey, H.; Electrical & Electronics Engineering; YARALIOĞLU, Göksen GökseninThis paper reports a MEMS-based sensor array enabling multiple clot-time tests in one disposable microfluidic cartridge using plasma. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thrompoblastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge, which consists of multiple microfluidic channels and MEMS microcantilevers placed in each channel. Microcantilevers are made of electro-plated nickel and actuated remotely using an external electro-coil. The read-out is also conducted remotely by a laser and the phase of the MEMS oscillator is monitored real-time. The system is capable of monitoring coagulation time with a precision estimated at 0.1sec.ArticlePublication Metadata only Precision density and viscosity measurement using two cantilevers with different widths(Elsevier, 2015) Cakmak, O.; Ermek, E.; Kilinc, N.; Yaralıoğlu, Göksen Göksenin; Urey, H.; Electrical & Electronics Engineering; YARALIOĞLU, Göksen GökseninWe introduce a novel method for fast measurement of liquid viscosity and density using two cantilevers with different geometries. Our method can be used for real-time monitoring in lab on chip systems and offer high accuracy for a large range of densities and viscosities. The measurement principle is based on tracking the oscillation frequencies of two cantilevers with a phase-locked loop (PLL) and comparing with reference measurements with a known fluid. A set of equations and a simple algorithm is developed to relate the density and the viscosity to the frequency shifts of the cantilevers. We found that the effect of the density and the viscosity can be well separated if cantilevers have different widths. In the experiments, two Nickel microcantilevers (widths 25 μm and 100 μm, length: 200 μm, thickness: 1.75 μm) were fully immersed in the liquid and the temperature was controlled. The actuation was using an external electro-coil and the oscillations were monitored using laser Doppler vibrometer. Thus, electrical connections to the cantilevers are not required, enabling measurements also in conductive liquids. The PLL is used to set the phase difference to 90° between the actuator and the sensor. Calibration measurements were performed using glycerol and ethylene glycol solutions with known densities and viscosities. The measurement error with the new method was lower than 3% in density in the range 995–1150 kg/m3 and 4.6% in viscosity in the range 0.935–4 mPa.s. Based on the signal-to-noise ratio, the minimum detectable difference in the viscosity is 1 μPa.s and the density is 0.18 kg/m3. Further improvements in the range and the accuracy are possible using 3 or more cantilevers with different geometries.Conference paperPublication Metadata only Two cantilever based sytem for viscosity and density monitoring(IEEE, 2015) Cakmak, O.; Ermek, E.; Kilinc, N.; Yaralıoğlu, Göksen Göksenin; Urey, H.; Electrical & Electronics Engineering; YARALIOĞLU, Göksen GökseninViscosity and density measurements in liquids in real-time is challenging. Previous MEMS based approaches use frequency sweeps for the purpose and those methods are slow and not real-time. We show that high precision viscosity and density measurements are possible using two cantilevers with different widths and by tracking their frequencies with a Phase-Locked-Loop in real-time.