Publication:
Forecasting multivariate time-series data using LSTM and mini-batches

dc.contributor.authorKhodabakhsh, Athar
dc.contributor.authorArı, İsmail
dc.contributor.authorBakır, M.
dc.contributor.authorAlagoz, S. M.
dc.contributor.departmentComputer Science
dc.contributor.editorBohlouli, M.
dc.contributor.editorBigham, B. S.
dc.contributor.editorNarimani, Z.
dc.contributor.editorVasighi, M.
dc.contributor.editorAnsari, E.
dc.contributor.ozuauthorARI, Ismail
dc.contributor.ozugradstudentKhodabakhsh, Athar
dc.date.accessioned2021-09-21T10:59:50Z
dc.date.available2021-09-21T10:59:50Z
dc.date.issued2020
dc.description.abstractMultivariate time-series data forecasting is a challenging task due to nonlinear interdependencies in complex industrial systems. It is crucial to model these dependencies automatically using the ability of neural networks to learn features by extraction of spatial relationships. In this paper, we converted non-spatial multivariate time-series data into a time-space format and used Recurrent Neural Networks (RNNs) which are building blocks of Long Short-Term Memory (LSTM) networks for sequential analysis of multi-attribute industrial data for future predictions. We compared the effect of mini-batch length and attribute numbers on prediction accuracy and found the importance of spatio-temporal locality for detecting patterns using LSTM.en_US
dc.identifier.doi10.1007/978-3-030-37309-2_10en_US
dc.identifier.endpage129en_US
dc.identifier.issn2367-4512
dc.identifier.scopus2-s2.0-85083420797
dc.identifier.startpage121en_US
dc.identifier.urihttp://hdl.handle.net/10679/7571
dc.identifier.urihttps://doi.org/10.1007/978-3-030-37309-2_10
dc.identifier.volume45
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofThe 7th International Conference on Contemporary Issues in Data Science CiDaS 2019: Data Science: From Research to Application
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsLSTMen_US
dc.subject.keywordsMultivariate time-seriesen_US
dc.subject.keywordsRNNen_US
dc.subject.keywordsSensorsen_US
dc.subject.keywordsSequence dataen_US
dc.subject.keywordsTime-seriesen_US
dc.titleForecasting multivariate time-series data using LSTM and mini-batchesen_US
dc.typebookParten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections