Publication:
Occlusion-aware 3D multiple object tracker with two cameras for visual surveillance

Placeholder

Institution Authors

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Sub Type

Conference paper

Access

restrictedAccess

Publication Status

published

Journal Issue

Abstract

An occlusion-aware multiple deformable object tracker for visual surveillance from two cameras is presented. Each object is tracked by a separate particle filter tracker, which is initiated upon detection of a new person and terminated when s/he leaves the scene. Objects are considered as 3D points at their centre of masses as if their mass density is uniform. Point objects and corresponding silhouette centroids in two views together with the epipolar geometry they satisfy resulted in a practical tracking methodology. An occlusion filter is described, that provides the tracker filters conditional occlusion probabilities of the objects, given their estimated positions. Advances over the previous work; in the computation of conditional occlusion probabilities, in incorporation of these probabilities in the particle filter, and in maintaining tracking of separating objects after long periods of moving close-by, are presented on PETS 2006, PETS 2009 and EPFL datasets.

Date

2014

Publisher

IEEE

Description

Due to copyright restrictions, the access to the full text of this article is only available via subscription.

Keywords

Citation


0

Views

0

Downloads