Publication:
A survey of adjustable robust optimization

dc.contributor.authorYanıkoğlu, İhsan
dc.contributor.authorGorissen, B. L.
dc.contributor.authorHertog, D. den
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorYANIKOĞLU, Ihsan
dc.date.accessioned2020-06-30T13:30:32Z
dc.date.available2020-06-30T13:30:32Z
dc.date.issued2019-09
dc.description.abstractStatic robust optimization (RO) is a methodology to solve mathematical optimization problems with uncertain data. The objective of static RO is to find solutions that are immune to all perturbations of the data in a so-called uncertainty set. RO is popular because it is a computationally tractable methodology and has a wide range of applications in practice. Adjustable robust optimization (ARO), on the other hand, is a branch of RO where some of the decision variables can be adjusted after some portion of the uncertain data reveals itself. ARO generally yields a better objective function value than that in static robust optimization because it gives rise to more flexible adjustable (or wait-and-see) decisions. Additionally, ARO also has many real life applications and is a computationally tractable methodology for many parameterized adjustable decision variables and uncertainty sets. This paper surveys the state-of-the-art literature on applications and theoretical/methodological aspects of ARO. Moreover, it provides a tutorial and a road map to guide researchers and practitioners on how to apply ARO methods, as well as, the advantages and limitations of the associated methods.
dc.identifier.doi10.1016/j.ejor.2018.08.031
dc.identifier.endpage813
dc.identifier.issn0377-2217
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85053850492
dc.identifier.startpage799
dc.identifier.urihttp://hdl.handle.net/10679/6672
dc.identifier.urihttps://doi.org/10.1016/j.ejor.2018.08.031
dc.identifier.volume277
dc.identifier.wos000468721200001
dc.language.isoeng
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofEuropean Journal of Operational Research
dc.rightsrestrictedAccess
dc.subject.keywordsSemi-infinite programming
dc.subject.keywordsRobust optimization
dc.subject.keywordsAdjustable robust optimization
dc.subject.keywordsMultistage decision making
dc.titleA survey of adjustable robust optimization
dc.typereview
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: