Publication: Benchmarking regression algorithms for income prediction modeling
dc.contributor.author | Kibekbaev, Azamat | |
dc.contributor.author | Duman, Ekrem | |
dc.contributor.department | Industrial Engineering | |
dc.contributor.ozuauthor | DUMAN, Ekrem | |
dc.contributor.ozugradstudent | Kibekbaev, Azamat | |
dc.date.accessioned | 2016-06-29T13:04:30Z | |
dc.date.available | 2016-06-29T13:04:30Z | |
dc.date.issued | 2015 | |
dc.description | Due to copyright restrictions, the access to the full text of this article is only available via subscription. | |
dc.description.abstract | This paper aims to predict incomes of customers for banks. In this large-scale income prediction benchmarking paper, we study the performance of various state-of-the-art regression algorithms (e.g. ordinary least squares regression, beta regression, robust regression, ridge regression, MARS, ANN, LS-SVM and CART, as well as two-stage models which combine multiple techniques) applied to five real-life datasets. A total of 16 techniques are compared using 10 different performance measures such as R2, hit rate and preciseness etc. It is found that the traditional linear regression results perform comparable to more sophisticated non-linear and two-stage models. | |
dc.identifier.doi | 10.1109/CSCI.2015.162 | |
dc.identifier.endpage | 185 | |
dc.identifier.isbn | 978-1-4673-9795-7 | |
dc.identifier.scopus | 2-s2.0-84964414512 | |
dc.identifier.startpage | 180 | |
dc.identifier.uri | http://hdl.handle.net/10679/4096 | |
dc.identifier.uri | https://doi.org/10.1109/CSCI.2015.162 | |
dc.identifier.wos | 000380405100034 | |
dc.language.iso | eng | en_US |
dc.peerreviewed | yes | |
dc.publicationstatus | published | en_US |
dc.publisher | IEEE | |
dc.relation.ispartof | 2015 International Conference on Computational Science and Computational Intelligence (CSCI) | |
dc.relation.publicationcategory | International | |
dc.rights | restrictedAccess | |
dc.subject.keywords | Regulation | |
dc.subject.keywords | Income prediction | |
dc.subject.keywords | Regression techniques | |
dc.subject.keywords | Performance measures | |
dc.title | Benchmarking regression algorithms for income prediction modeling | en_US |
dc.type | conferenceObject | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b | |
relation.isOrgUnitOfPublication.latestForDiscovery | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b |