Publication:
Benchmarking regression algorithms for income prediction modeling

dc.contributor.authorKibekbaev, Azamat
dc.contributor.authorDuman, Ekrem
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorDUMAN, Ekrem
dc.contributor.ozugradstudentKibekbaev, Azamat
dc.date.accessioned2016-06-29T13:04:30Z
dc.date.available2016-06-29T13:04:30Z
dc.date.issued2015
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractThis paper aims to predict incomes of customers for banks. In this large-scale income prediction benchmarking paper, we study the performance of various state-of-the-art regression algorithms (e.g. ordinary least squares regression, beta regression, robust regression, ridge regression, MARS, ANN, LS-SVM and CART, as well as two-stage models which combine multiple techniques) applied to five real-life datasets. A total of 16 techniques are compared using 10 different performance measures such as R2, hit rate and preciseness etc. It is found that the traditional linear regression results perform comparable to more sophisticated non-linear and two-stage models.
dc.identifier.doi10.1109/CSCI.2015.162
dc.identifier.endpage185
dc.identifier.isbn978-1-4673-9795-7
dc.identifier.scopus2-s2.0-84964414512
dc.identifier.startpage180
dc.identifier.urihttp://hdl.handle.net/10679/4096
dc.identifier.urihttps://doi.org/10.1109/CSCI.2015.162
dc.identifier.wos000380405100034
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherIEEE
dc.relation.ispartof2015 International Conference on Computational Science and Computational Intelligence (CSCI)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsRegulation
dc.subject.keywordsIncome prediction
dc.subject.keywordsRegression techniques
dc.subject.keywordsPerformance measures
dc.titleBenchmarking regression algorithms for income prediction modelingen_US
dc.typeconferenceObjecten_US
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files