Publication:
Subjective bayesian networks and human-in-the-loop situational understanding

dc.contributor.authorBraines, D.
dc.contributor.authorThomas, A.
dc.contributor.authorKaplan, L.
dc.contributor.authorŞensoy, Murat
dc.contributor.authorBakdash, J. Z.
dc.contributor.authorIvanovska, M.
dc.contributor.authorPreece, A.
dc.contributor.authorCerutti, F.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorŞENSOY, Murat
dc.date.accessioned2019-01-28T11:20:37Z
dc.date.available2019-01-28T11:20:37Z
dc.date.issued2018-03-21
dc.description.abstractIn this paper we present a methodology to exploit human-machine coalitions for situational understanding. Situational understanding refers to the ability to relate relevant information and form logical conclusions, as well as identify gaps in information. This process for comprehension of the meaning information requires the ability to reason inductively, for which we will exploit the machines’ ability to ‘learn’ from data. However, important phenomena are often rare in occurrence with high degrees of uncertainty, thus severely limiting the availability of instance data for training, and hence the applicability of many machine learning approaches. Therefore, we present the benefits of Subjective Bayesian Networks—i.e., Bayesian Networks with imprecise probabilities—for situational understanding, and the role of conversational interfaces for supporting decision makers in the evolution of situational understanding.en_US
dc.description.sponsorshipArmy Research Laboratory ; Ministry of Defence
dc.identifier.doi10.1007/978-3-319-78102-0_2en_US
dc.identifier.endpage53en_US
dc.identifier.isbn978-331978101-3
dc.identifier.issn0302-9743en_US
dc.identifier.scopus2-s2.0-85045180992
dc.identifier.startpage29en_US
dc.identifier.urihttp://hdl.handle.net/10679/6124
dc.identifier.urihttps://doi.org/10.1007/978-3-319-78102-0_2
dc.identifier.volume10775 LNAIen_US
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofInternational Workshop on Graph Structures for Knowledge Representation and Reasoning GKR 2017: Graph Structures for Knowledge Representation and Reasoning, Part of the Lecture Notes in Computer Science book series (LNCS, volume 10775)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleSubjective bayesian networks and human-in-the-loop situational understandingen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections