Publication:
Point of sale Fraud detection methods via machine learning

dc.contributor.authorBegen, E.
dc.contributor.authorSayan, İ. U.
dc.contributor.authorBayrak, A. T.
dc.contributor.authorYıldız, Olcay Taner
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorYILDIZ, Olcay Taner
dc.date.accessioned2024-02-15T08:09:51Z
dc.date.available2024-02-15T08:09:51Z
dc.date.issued2023
dc.description.abstractRestaurant cash registers frequently experience fraudulent transactions, leading to substantial financial losses for operators. Despite several methods aimed at preventing fraud at the cash register, addressing this issue remains an ongoing concern. In this study, machine learning methods are used to detect fraudulent transactions at the cash register in fast-food restaurants. By using POS logs, transactions in restaurants are recorded and these logs are analyzed to detect fraudulent transactions on an unbalanced dataset. Random forest, XGBoost and LGBM algorithms are used in the study and different resampling techniques (ADASYN etc.) are applied to improve the performance of these algorithms. In addition, it is aimed to find the best parameters with the randomized search method. In conclusion, this study offers a solution for detecting fraudulent transactions at the cash register in fast-food restaurants. The results of the study are promising in its current state.en_US
dc.identifier.doi10.1109/INISTA59065.2023.10310515en_US
dc.identifier.isbn979-835033890-4
dc.identifier.scopus2-s2.0-85179550067
dc.identifier.urihttp://hdl.handle.net/10679/9138
dc.identifier.urihttps://doi.org/10.1109/INISTA59065.2023.10310515
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA)
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsLgbmen_US
dc.subject.keywordsPoint of sale fraud detectionen_US
dc.subject.keywordsResamplingen_US
dc.subject.keywordsUnbalanced dataen_US
dc.subject.keywordsXgboosten_US
dc.titlePoint of sale Fraud detection methods via machine learningen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections