Publication:
Formant position based weighted spectral features for emotion recognition

dc.contributor.authorBozkurt, E.
dc.contributor.authorErzin, E.
dc.contributor.authorEroğlu Erdem, Ç.
dc.contributor.authorErdem, Tanju
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorERDEM, Arif Tanju
dc.date.accessioned2012-08-15T13:27:18Z
dc.date.available2012-08-15T13:27:18Z
dc.date.issued2011
dc.description.abstractIn this paper, we propose novel spectrally weighted mel-frequency cepstral coefficient (WMFCC) features for emotion recognition from speech. The idea is based on the fact that formant locations carry emotion-related information, and therefore critical spectral bands around formant locations can be emphasized during the calculation of MFCC features. The spectral weighting is derived from the normalized inverse harmonic mean function of the line spectral frequency (LSF) features, which are known to be localized around formant frequencies. The above approach can be considered as an early data fusion of spectral content and formant location information. We also investigate methods for late decision fusion of unimodal classifiers. We evaluate the proposed WMFCC features together with the standard spectral and prosody features using HMM based classifiers on the spontaneous FAU Aibo emotional speech corpus. The results show that unimodal classifiers with the WMFCC features perform significantly better than the classifiers with standard spectral features. Late decision fusion of classifiers provide further significant performance improvements.
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1016/j.specom.2011.04.003
dc.identifier.endpage1197
dc.identifier.issn0092-2102
dc.identifier.issue9-10
dc.identifier.scopus2-s2.0-79960848203
dc.identifier.startpage1186
dc.identifier.urihttp://hdl.handle.net/10679/235
dc.identifier.urihttps://doi.org/10.1016/j.specom.2011.04.003
dc.identifier.volume53
dc.identifier.wos000294104000010
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatuspublished
dc.publisherElsevier
dc.relation.ispartofSpeech Communication
dc.relation.projectinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/106E201
dc.relation.projectinfo:eu-repo/grantAgreement/TUBITAK/1001 - Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı/110E056
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsEmotion recognition
dc.subject.keywordsEmotional speech classification
dc.subject.keywordsSpectral features
dc.titleFormant position based weighted spectral features for emotion recognition
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files