Publication:
A robust estimation model for surgery durations with temporal, operational, and surgery team effects

dc.contributor.authorKayış, Enis
dc.contributor.authorKhaniyev, T. T.
dc.contributor.authorSuermondt, J.
dc.contributor.authorSylvester, K.
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorKAYIŞ, Enis
dc.date.accessioned2015-12-28T11:03:00Z
dc.date.available2015-12-28T11:03:00Z
dc.date.issued2015-09
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractFor effective operating room (OR) planning, surgery duration estimation is critical. Overestimation leads to underutilization of expensive hospital resources (e.g., OR time) whereas underestimation leads to overtime and high waiting times for the patients. In this paper, we consider a particular estimation method currently in use and using additional temporal, operational, and staff-related factors provide a statistical model to adjust these estimates for higher accuracy. The results show that our method increases the accuracy of the estimates, in particular by reducing large errors. For the 8093 cases we have in our data, our model decreases the mean absolute deviation of the currently used scheduled duration (42.65 ± 0.59 minutes) by 1.98 ± 0.28 minutes. For the cases with large negative errors, however, the decrease in the mean absolute deviation is 20.35 ± 0.74 minutes (with a respective increase of 0.89 ± 0.66 minutes in large positive errors). We find that not only operational and temporal factors, but also medical staff and team experience related factors (such as number of nurses and the frequency of the medical team working together) could be used to improve the currently used estimates. Finally, we conclude that one could further improve these predictions by combining our model with other good prediction models proposed in the literature. Specifically, one could decrease the mean absolute deviation of 39.98 ± 0.58 minutes obtained via the method of Dexter et al (Anesth Analg 117(1):204–209, 2013) by 1.02 ± 0.21 minutes by combining our method with theirs.
dc.description.sponsorshipHewlett-Packard Company
dc.identifier.doi10.1007/s10729-014-9309-8
dc.identifier.endpage233
dc.identifier.issn1572-9389
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84939566878
dc.identifier.startpage222
dc.identifier.urihttp://hdl.handle.net/10679/1352
dc.identifier.urihttps://doi.org/10.1007/s10729-014-9309-8
dc.identifier.volume18
dc.identifier.wos000360082100002
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatuspublished
dc.publisherSpringer Science+Business Media
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsSurgery duration estimation
dc.subject.keywordsOperating room planning
dc.subject.keywordsEHR data
dc.subject.keywordsHealth care analytics
dc.subject.keywordsSurgical team composition and experience
dc.titleA robust estimation model for surgery durations with temporal, operational, and surgery team effects
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: