Publication: Channel estimation in underwater cooperative OFDM system with amplify-and-forward relaying
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
conferenceObject
Access
restrictedAccess
Publication Status
published
Abstract
This paper is concerned with a challenging problem of channel estimation for amplify-and-forward cooperative relay based orthogonal frequency division multiplexing (OFDM) systems in the resence of sparse underwater acoustic channels and of the correlative non-Gaussian noise. We exploit the sparse structure of the channel
impulse response to improve the performance of the channel estimation algorithm, due to the reduced number of taps to be estimated. The resulting novel algorithm initially estimates the overall sparse channel taps from the source to the destination as well as their locations using the matching pursuit (MP) approach. The correlated non-Gaussian effective noise is modeled as a Gaussian mixture. Based on the aussian mixture model, an efficient and low complexity algorithm is developed based on the combinations of the MP and the space-alternating generalized improve the estimates of the channel taps and their location as well as the noise distribution parameters in an iterative way. The proposed SAGE algorithm is designed in such a way that, by choosing the admissible hidden data properly on which the SAGE algorithm relies, a subset of parameters is updated for analytical tractability and the remaining parameters for faster convergence Computer simulations show that underwater acoustic (UWA) channel is estimated very effectively and the proposed algorithm has excellent symbol error rate and channel estimation performance.
Date
2012
Publisher
IEEE
Description
Due to copyright restrictions, the access to the full text of this article is only available via subscription.