Publication:
BoB: Bandwidth prediction for real-time communications using heuristic and reinforcement learning

dc.contributor.authorBentaleb, A.
dc.contributor.authorAkçay, Mehmet Necmettin
dc.contributor.authorLim, M.
dc.contributor.authorBeğen, Ali Cengiz
dc.contributor.authorZimmermann, R.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorBEĞEN, Ali Cengiz
dc.contributor.ozugradstudentAkçay, Mehmet Necmettin
dc.date.accessioned2023-08-09T11:35:51Z
dc.date.available2023-08-09T11:35:51Z
dc.date.issued2023
dc.description.abstractBandwidth prediction is critical in any Real-time Communication (RTC) service or application. This component decides how much media data can be sent in real time. Subsequently, the video and audio encoder dynamically adapts the bitrate to achieve the best quality without congesting the network and causing packets to be lost or delayed. To date, several RTC services have deployed the heuristic-based Google Congestion Control (GCC), which performs well under certain circumstances and falls short in some others. In this paper, we leverage the advancements in reinforcement learning and propose BoB (Bang-on-Bandwidth) — a hybrid bandwidth predictor for RTC. At the beginning of the RTC session, BoB uses a heuristic-based approach. It then switches to a learning-based approach. BoB predicts the available bandwidth accurately and improves bandwidth utilization under diverse network conditions compared to the two winning solutions of the ACM MMSys'21 grand challenge on bandwidth estimation in RTC. An open-source implementation of BoB is publicly available for further testing and research.en_US
dc.description.versionPublisher versionen_US
dc.identifier.doi10.1109/TMM.2022.3216456en_US
dc.identifier.endpage6945en_US
dc.identifier.issn1520-9210en_US
dc.identifier.scopus2-s2.0-85140709165
dc.identifier.startpage6930en_US
dc.identifier.urihttp://hdl.handle.net/10679/8614
dc.identifier.urihttps://doi.org/10.1109/TMM.2022.3216456
dc.identifier.volume25
dc.identifier.wos001133278300003
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Multimedia
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsAttribution 4.0 International*
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.keywordsAlphaRTCen_US
dc.subject.keywordsBandwidthen_US
dc.subject.keywordsBandwidth predictionen_US
dc.subject.keywordsBit rateen_US
dc.subject.keywordsEstimationen_US
dc.subject.keywordsOptimizationen_US
dc.subject.keywordsPrediction algorithmsen_US
dc.subject.keywordsQuality of experienceen_US
dc.subject.keywordsReal-time communicationsen_US
dc.subject.keywordsReinforcement learningen_US
dc.subject.keywordsRTCen_US
dc.subject.keywordsStreaming mediaen_US
dc.subject.keywordsWebRTCen_US
dc.titleBoB: Bandwidth prediction for real-time communications using heuristic and reinforcement learningen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BoB Bandwidth prediction for real-time communications using heuristic and reinforcement learning.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections