Publication:
Variational closed-Form deep neural net inference

dc.contributor.authorKandemir, Melih
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKANDEMİR, Malih
dc.date.accessioned2019-04-02T10:58:21Z
dc.date.available2019-04-02T10:58:21Z
dc.date.issued2018-09
dc.description.abstractWe introduce a Bayesian construction for deep neural networks that is amenable to mean field variational inference that operates solely by closed-form update rules. Hence, it does not require any learning rate to be manually tuned. We show that by this virtue it becomes possible with our model to perform effective deep learning on three setups where conventional neural nets are known to perform suboptimally: i) online learning, ii) learning from small data, and iii) active learning. We compare our approach to earlier Bayesian neural network inference techniques spanning from expectation propagation to gradient-based variational Bayes, as well as deterministic neural nets with various activations functions. We observe our approach to improve on all these alternatives in two mainstream vision benchmarks and two medical data sets: diabetic retinopathy screening and exudate detection from eye fundus images.en_US
dc.identifier.doi10.1016/j.patrec.2018.07.001en_US
dc.identifier.endpage151en_US
dc.identifier.issn0167-8655en_US
dc.identifier.scopus2-s2.0-85049560836
dc.identifier.startpage145en_US
dc.identifier.urihttp://hdl.handle.net/10679/6250
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2018.07.001
dc.identifier.volume112en_US
dc.identifier.wos000443950800021
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofPattern Recognition Letters
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsBayesian Neural Networksen_US
dc.subject.keywordsVariational Bayesen_US
dc.subject.keywordsOnline learningen_US
dc.subject.keywordsActive learningen_US
dc.titleVariational closed-Form deep neural net inferenceen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections