Publication:
Variational closed-Form deep neural net inference

dc.contributor.authorKandemir, Melih
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKANDEMİR, Malih
dc.date.accessioned2019-04-02T10:58:21Z
dc.date.available2019-04-02T10:58:21Z
dc.date.issued2018-09
dc.description.abstractWe introduce a Bayesian construction for deep neural networks that is amenable to mean field variational inference that operates solely by closed-form update rules. Hence, it does not require any learning rate to be manually tuned. We show that by this virtue it becomes possible with our model to perform effective deep learning on three setups where conventional neural nets are known to perform suboptimally: i) online learning, ii) learning from small data, and iii) active learning. We compare our approach to earlier Bayesian neural network inference techniques spanning from expectation propagation to gradient-based variational Bayes, as well as deterministic neural nets with various activations functions. We observe our approach to improve on all these alternatives in two mainstream vision benchmarks and two medical data sets: diabetic retinopathy screening and exudate detection from eye fundus images.
dc.identifier.doi10.1016/j.patrec.2018.07.001
dc.identifier.endpage151
dc.identifier.issn0167-8655
dc.identifier.scopus2-s2.0-85049560836
dc.identifier.startpage145
dc.identifier.urihttp://hdl.handle.net/10679/6250
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2018.07.001
dc.identifier.volume112
dc.identifier.wos000443950800021
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofPattern Recognition Letters
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsBayesian Neural Networks
dc.subject.keywordsVariational Bayes
dc.subject.keywordsOnline learning
dc.subject.keywordsActive learning
dc.titleVariational closed-Form deep neural net inference
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections