Publication:
ANAC 2017: Repeated multilateral negotiation league

dc.contributor.authorAydoğan, Reyhan
dc.contributor.authorFujita, K.
dc.contributor.authorBaarslag, T.
dc.contributor.authorJonker, C. M.
dc.contributor.authorIto, T.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.date.accessioned2023-05-26T11:09:29Z
dc.date.available2023-05-26T11:09:29Z
dc.date.issued2021
dc.description.abstractThe Automated Negotiating Agents Competition (ANAC) is annually organized competition to facilitate the research on automated negotiation. This paper presents the ANAC 2017 Repeated Multilateral Negotiation League. As human negotiators do, agents are supposed to learn from their previous negotiations and improve their negotiation skills over time. Especially, when they negotiate with the same opponent on the same domain, they can adopt their negotiation strategy according to their past experiences. They can adjust their acceptance threshold or bidding strategy accordingly. In ANAC 2017, participants aimed to develop such a negotiating agent. Accordingly, this paper describes the competition settings and results with a brief description of the winner negotiation strategies.en_US
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek
dc.identifier.doi10.1007/978-981-15-5869-6_7en_US
dc.identifier.endpage115en_US
dc.identifier.isbn978-981155868-9
dc.identifier.issn1860-949Xen_US
dc.identifier.startpage101en_US
dc.identifier.urihttp://hdl.handle.net/10679/8344
dc.identifier.urihttps://doi.org/10.1007/978-981-15-5869-6_7
dc.identifier.volume905en_US
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofStudies in Computational Intelligence, Part of the Studies in Computational Intelligence book series (SCI,volume 905)
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.titleANAC 2017: Repeated multilateral negotiation leagueen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections