Publication:
Algorithm selection and combining multiple learners for residential energy prediction

dc.contributor.authorGüngör, Onat
dc.contributor.authorAkşanlı, B.
dc.contributor.authorAydoğan, Reyhan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.contributor.ozugradstudentGüngör, Onat
dc.date.accessioned2020-06-29T19:04:10Z
dc.date.available2020-06-29T19:04:10Z
dc.date.issued2019-10
dc.description.abstractBalancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. This work aims to increase the accuracy of those predictions as much as possible. Accordingly, we first introduce an algorithm selection approach, which identifies the best prediction algorithm for the given residence with respect to its characteristics such as number of people living, appliances and so on. In addition to this, we also study combining multiple learners to increase the accuracy of the predictions. In our experimental setup, we evaluate the aforementioned approaches. Empirical results show that adopting an algorithm selection approach performs better than any single prediction algorithm. Furthermore, combining multiple learners increases the accuracy of the energy consumption prediction significantly.en_US
dc.identifier.doi10.1016/j.future.2019.04.018en_US
dc.identifier.endpage400en_US
dc.identifier.issn0167-739Xen_US
dc.identifier.scopus2-s2.0-85065220531
dc.identifier.startpage391en_US
dc.identifier.urihttp://hdl.handle.net/10679/6664
dc.identifier.urihttps://doi.org/10.1016/j.future.2019.04.018
dc.identifier.volume99en_US
dc.identifier.wos000502894300032
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofFuture Generation Computer Systems
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsElectricity consumption predictionen_US
dc.subject.keywordsAlgorithm selectionen_US
dc.subject.keywordsCombining multiple learnersen_US
dc.subject.keywordsTime series predictionen_US
dc.titleAlgorithm selection and combining multiple learners for residential energy predictionen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections