Publication:
Stream analytics and adaptive windows for operational mode identification of time-varying industrial systems

dc.contributor.authorKhodabakhsh, Athar
dc.contributor.authorArı, İsmail
dc.contributor.authorBakır, M.
dc.contributor.authorAlagoz, S. M.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorARI, Ismail
dc.contributor.ozugradstudentKhodabakhsh, Athar
dc.date.accessioned2020-04-17T22:50:51Z
dc.date.available2020-04-17T22:50:51Z
dc.date.issued2018-09-07
dc.description.abstractIt is necessary to develop accurate, yet simple and efficient models that can be used with high-speed industrial data streams. In this paper, we develop a mode identification technique using stream analytics and show that it may be more effective than batch models, especially for time-varying systems. These industrial systems continuously monitor hundreds of sensors, but the relationships among variables change over time, which are identified as different operational modes. To detect drifts among modes, predictive modeling techniques such as regression analysis, K-means and DBSCAN clustering are used over sensor data streams from an oil refinery and models are updated in real-time using window-based analysis. Finally, an adaptive window size tuning approach based on the TCP congestion control algorithm is discussed, which reduces model update costs as well as prediction errors.en_US
dc.description.sponsorshipTUPRAS
dc.identifier.doi10.1109/BigDataCongress.2018.00042en_US
dc.identifier.endpage246en_US
dc.identifier.isbn978-1-5386-7232-7
dc.identifier.issn2379-7703en_US
dc.identifier.scopus2-s2.0-85057376045
dc.identifier.startpage242en_US
dc.identifier.urihttp://hdl.handle.net/10679/6521
dc.identifier.urihttps://doi.org/10.1109/BigDataCongress.2018.00042
dc.identifier.wos000450160400034
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2018 IEEE International Congress on Big Data (BigData Congress)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsOperational mode identificationen_US
dc.subject.keywordsSensoren_US
dc.subject.keywordsLinear regressionen_US
dc.subject.keywordsStream dataen_US
dc.subject.keywordsAdaptive windowen_US
dc.subject.keywordsOutlier detectionen_US
dc.titleStream analytics and adaptive windows for operational mode identification of time-varying industrial systemsen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections