Publication:
Electric vehicle model parameter estimation with combined least squares and gradient descent method

dc.contributor.authorGözüküçük, Mehmet Ali
dc.contributor.authorUğurdağ, Hasan Fatih
dc.contributor.authorDedeköy, Mert
dc.contributor.authorÇelik, Mert
dc.contributor.authorAkdoğan, Taylan
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.departmentElectrical & Electronics Engineering
dc.contributor.ozuauthorUĞURDAĞ, Hasan Fatih
dc.contributor.ozuauthorAKDOĞAN, Taylan
dc.contributor.ozugradstudentGözüküçük, Mehmet Ali
dc.contributor.ozugradstudentÇelik, Mert
dc.contributor.ozugradstudentDedeköy, Mert
dc.date.accessioned2020-09-10T11:12:34Z
dc.date.available2020-09-10T11:12:34Z
dc.date.issued2019
dc.description.abstractEnergy management algorithms have a crucial role in electric vehicles due to their limited driving range. For an energy management algorithm to be effective, we should model the vehicle as accurately as possible. That is, not only the structure of the model should be accurate, but also the parameters of the model should be accurate. In this work, we take the model of an electric vehicle and tune three parameters in it based on trip data, namely, vehicle mass, air drag coefficient, and rolling resistance coefficient. We do this by using Least Squares method to set the initial guess and then by optimizing the parameters using Gradient Descent. To the best of our knowledge, this is the first work that simultaneously estimates these three parameters. Our work is also unique in the sense that it combines Least Squares and Gradient Descent.en_US
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.23919/ELECO47770.2019.8990393en_US
dc.identifier.endpage809en_US
dc.identifier.isbn978-605011275-7
dc.identifier.scopus2-s2.0-85080962095
dc.identifier.startpage805en_US
dc.identifier.urihttp://hdl.handle.net/10679/6936
dc.identifier.urihttps://doi.org/10.23919/ELECO47770.2019.8990393
dc.identifier.wos000552654100162
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/115E097
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/115E127
dc.relation.ispartof2019 11th International Conference on Electrical and Electronics Engineering (ELECO)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleElectric vehicle model parameter estimation with combined least squares and gradient descent methoden_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication7b58c5c4-dccc-40a3-aaf2-9b209113b763
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: