Publication:
Soft actor-critic-based computation offloading in multiuser MEC-enabled IoT-A lifetime maximization perspective

dc.contributor.authorHeidarpour, A. R.
dc.contributor.authorHeidarpour, M. R.
dc.contributor.authorArdakani, M.
dc.contributor.authorTellambura, C.
dc.contributor.authorUysal, Murat
dc.contributor.departmentElectrical & Electronics Engineering
dc.contributor.ozuauthorUYSAL, Murat
dc.date.accessioned2023-11-23T08:15:43Z
dc.date.available2023-11-23T08:15:43Z
dc.date.issued2023-10-15
dc.description.abstractThis article studies the network lifetime optimization problem in a multiuser mobile-edge computing (MEC)-enabled Internet of Things (IoT) system comprising an access point (AP), a MEC server, and a set of K mobile devices (MDs) with limited battery capacity. Considering the residual battery energy at the MDs, stochastic task arrivals, and time-varying wireless fading channels, a soft actor-critic (SAC)-based deep reinforcement learning (DRL) lifetime maximization, called DeepLM, is proposed to jointly optimize the task splitting ratio, the local CPU-cycle frequencies at the MDs, the bandwidth allocation, and the CPU-cycle frequency allocation at the MEC server subject to the task queuing backlogs constraint, the bandwidth constraint, and maximum CPU-cycle frequency constraints at the MDs and the MEC server. Our results reveal that DeepLM enjoys a fast convergence rate and a small oscillation amplitude. We also compare the performance of DeepLM with three benchmark offloading schemes, namely, fully edge computing (FEC), fully local computing (FLC), and random computation offloading (RCO). DeepLM increases the network lifetime by 496% and 229% compared to the FLC and RCO schemes. Interestingly, it achieves such a colossal lifetime improvement when its nonbacklog probability is 0.99, while that of FEC, FLC, and RCO is 0.69, 0.53, and 0.25, respectively, showing a significant performance gain of 30%, 46%, and 74%.en_US
dc.description.sponsorshipTelus Communications Inc. ; Natural Sciences and Engineering Research Council of Canada
dc.identifier.doi10.1109/JIOT.2023.3277753en_US
dc.identifier.endpage17584en_US
dc.identifier.issn2327-4662en_US
dc.identifier.issue20en_US
dc.identifier.scopus2-s2.0-85160248576
dc.identifier.startpage17571en_US
dc.identifier.urihttp://hdl.handle.net/10679/8993
dc.identifier.urihttps://doi.org/10.1109/JIOT.2023.3277753
dc.identifier.volume10en_US
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Internet of Things Journal
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsDeep reinforcement learning (DRL)en_US
dc.subject.keywordsInternet of Things (IoT)en_US
dc.subject.keywordsLifetime maximizationen_US
dc.subject.keywordsMobile-edge computing (MEC)en_US
dc.subject.keywordsSoft actor-critic (SAC)en_US
dc.titleSoft actor-critic-based computation offloading in multiuser MEC-enabled IoT-A lifetime maximization perspectiveen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7b58c5c4-dccc-40a3-aaf2-9b209113b763
relation.isOrgUnitOfPublication.latestForDiscovery7b58c5c4-dccc-40a3-aaf2-9b209113b763

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: