Publication:
Robust reformulations of ambiguous chance constraints with discrete probability distributions

dc.contributor.authorYanıkoğlu, İhsan
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorYANIKOĞLU, Ihsan
dc.date.accessioned2024-03-06T10:40:10Z
dc.date.available2024-03-06T10:40:10Z
dc.date.issued2019
dc.description.abstractThis paper proposes robust reformulations of ambiguous chance constraints when the underlying family of distributions is discrete and supported in a so-called ``p-box'' or ``p-ellipsoidal'' uncertainty set. Using the robust optimization paradigm, the deterministic counterparts of the ambiguous chance constraints are reformulated as mixed-integer programming problems which can be tackled by commercial solvers for moderate sized instances. For larger sized instances, we propose a safe approximation algorithm that is computationally efficient and yields high quality solutions. The associated approach and the algorithm can be easily extended to joint chance constraints, nonlinear inequalities, and dependent data without introducing additional mathematical optimization complexity to that of the original robust reformulation. In numerical experiments, we first present our approach over a toy-sized chance constrained knapsack problem. Then, we compare optimality and computational performances of the safe approximation algorithm with those of the exact and the randomized approaches for larger sized instances via Monte Carlo simulation.en_US
dc.description.versionPublisher versionen_US
dc.identifier.doi10.11121/ijocta.01.2019.00611en_US
dc.identifier.endpage252en_US
dc.identifier.issn2146-0957en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85099163393
dc.identifier.startpage236en_US
dc.identifier.urihttp://hdl.handle.net/10679/9270
dc.identifier.urihttps://doi.org/10.11121/ijocta.01.2019.00611
dc.identifier.volume9en_US
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherBalikesir University
dc.relation.ispartofInternational Journal of Optimization and Control: Theories and Applications
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsopenAccess
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordsRobust optimizationen_US
dc.subject.keywordsChance constrainten_US
dc.subject.keywordsAmbiguous chance constrainten_US
dc.titleRobust reformulations of ambiguous chance constraints with discrete probability distributionsen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robust reformulations of ambiguous chance constraints with discrete probability distributions.pdf
Size:
385.43 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: