Publication:
Feature extraction for enhancing data-driven urban building energy models

dc.contributor.authorBolluk, Muhammed Said
dc.contributor.authorSeyis, Senem
dc.contributor.authorAydoğan, Reyhan
dc.contributor.departmentComputer Science
dc.contributor.departmentCivil Engineering
dc.contributor.ozuauthorKAZAZOĞLU, Senem Seyis
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.contributor.ozugradstudentBolluk, Muhammed Said
dc.date.accessioned2024-02-16T10:10:37Z
dc.date.available2024-02-16T10:10:37Z
dc.date.issued2023
dc.description.abstractBuilding energy demand assessment plays a crucial role in designing energy-efficient building stocks. However, most studies adopting a data-driven approach feel the deficiency of datasets with building-specific information in building energy consumption estimation. Hence, the research objective of this study is to extract new features within the climate, demographic, and building use type categories and increase the accuracy of a non-parametric regression model that estimates the energy consumption of a building stock in Seattle. The results show that adding new features to the original dataset from the building use type category increased the regression results with a 6.8% less error and a 30.8% higher R2 Score. Therefore, this study shows that building energy consumption estimation can be enhanced via new feature extraction equipped with domain knowledge.en_US
dc.identifier.doi10.35490/EC3.2023.291en_US
dc.identifier.isbn978-070170273-1
dc.identifier.issn2684-1150en_US
dc.identifier.scopus2-s2.0-85177215718
dc.identifier.urihttp://hdl.handle.net/10679/9158
dc.identifier.urihttps://doi.org/10.35490/EC3.2023.291
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherEuropean Council on Computing in Construction (EC3)en_US
dc.relation.ispartofProceedings of the European Conference on Computing in Construction
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsUrban building energy demand predictionen_US
dc.subject.keywordsFeature extractionen_US
dc.titleFeature extraction for enhancing data-driven urban building energy modelsen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublicationaf7d5a6d-1e33-48a1-94e9-8ec45f2d8c85
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: