Publication:
Time series predictive models for opponent behavior modeling in bilateral negotiations

dc.contributor.authorYesevi, Gevher
dc.contributor.authorKeskin, Mehmet Onur
dc.contributor.authorDoğru, Anıl
dc.contributor.authorAydoğan, Reyhan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.contributor.ozugradstudentYesevi, Gevher
dc.contributor.ozugradstudentKeskin, Mehmet Onur
dc.contributor.ozugradstudentDoğru, Anıl
dc.date.accessioned2023-09-18T11:59:58Z
dc.date.available2023-09-18T11:59:58Z
dc.date.issued2023
dc.description.abstractIn agent-based negotiations, it is crucial to understand the opponent’s behavior and predict its bidding pattern to act strategically. Foreseeing the utility of the opponent’s coming offer provides valuable insight to the agent so that it can decide its next move wisely. Accordingly, this paper addresses predicting the opponent’s coming offers by employing two deep learning-based approaches: Long Short-Term Memory Networks and Transformers. The learning process has three different targets: estimating the agent’s utility of the opponent’s coming offer, estimating the agent’s utility of that without using opponent-related variables, and estimating the opponent’s utility of that by using opponent-related variables. This work reports the performances of these models that are evaluated in various negotiation scenarios. Our evaluation showed promising results regarding the prediction performance of the proposed methods.en_US
dc.identifier.doi10.1007/978-3-031-21203-1_23en_US
dc.identifier.endpage398en_US
dc.identifier.issn0302-9743en_US
dc.identifier.scopus2-s2.0-85142765792
dc.identifier.startpage381en_US
dc.identifier.urihttp://hdl.handle.net/10679/8861
dc.identifier.urihttps://doi.org/10.1007/978-3-031-21203-1_23
dc.identifier.volume13753en_US
dc.identifier.wos000920727000023
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofPRIMA 2022: PRIMA 2022: Principles and Practice of Multi-Agent Systems
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsAutomated negotiationen_US
dc.subject.keywordsMulti-agent systemsen_US
dc.subject.keywordsTime-series predictionen_US
dc.subject.keywordsUtility predictionen_US
dc.titleTime series predictive models for opponent behavior modeling in bilateral negotiationsen_US
dc.typeconferenceObjecten_US
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections