Publication:
A sparse matrix‐vector multiplication method with low preprocessing cost

dc.contributor.authorAktemur, Tankut Barış
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAKTEMUR, Tankut Bariş
dc.date.accessioned2019-02-11T08:19:36Z
dc.date.available2019-02-11T08:19:36Z
dc.date.issued2018-11-10
dc.description.abstractSparse matrix-vector multiplication (SpMV) is a crucial operation used for solving many engineering and scientific problems. In general, there is no single SpMV method that gives high performance for all sparse matrices. Even though there exist sparse matrix storage formats and SpMV implementations that yield high efficiency for certain matrix structures, using these methods may entail high preprocessing or format conversion costs. In this work, we present a new SpMV implementation, named CSRLenGoto, that can be utilized by preprocessing the Compressed Sparse Row (CSR) format of a matrix. This preprocessing phase is inexpensive enough for the associated cost to be compensated in just a few repetitions of the SpMV operation. CSRLenGoto is based on complete loop unrolling and gives performance improvements in particular for matrices whose mean row length is low. We parallelized our method by integrating it into a state-of-the-art matrix partitioning approach as the kernel operation. We observed up to 2.46× and on the average 1.29× speedup with respect to Intel MKL's SpMV function for matrices with short- or medium-length rows.
dc.identifier.doi10.1002/cpe.4701
dc.identifier.endpage12
dc.identifier.issn1532-0626
dc.identifier.issue21
dc.identifier.scopus2-s2.0-85052438571
dc.identifier.startpage1
dc.identifier.urihttp://hdl.handle.net/10679/6162
dc.identifier.urihttps://doi.org/10.1002/cpe.4701
dc.identifier.volume30
dc.identifier.wos000447267900007
dc.language.isoeng
dc.publicationstatusPublished
dc.publisherWiley
dc.relation.ispartofConcurrency Computation
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsCompressed sparse row
dc.subject.keywordsSparse matrix-vector multiplication
dc.subject.keywordsSpMV
dc.titleA sparse matrix‐vector multiplication method with low preprocessing cost
dc.typeconferenceObject
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections