Publication:
Lower uncertainty bounds of diffraction-based nanoparticle sizes

dc.contributor.authorNoyan, İ. C.
dc.contributor.authorÖztürk, Hande
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorKAYMAKSÜT, Hande Öztürk
dc.date.accessioned2023-06-22T12:47:56Z
dc.date.available2023-06-22T12:47:56Z
dc.date.issued2022-06
dc.description.abstractA self-consistent analysis is reported of traditional diffraction-based particle size determination techniques applied to synthetic diffraction profiles generated with the Patterson approach. The results show that dimensions obtained from traditional techniques utilizing peak fitting or Fourier analysis for single-crystal nanoparticles have best-case error bounds of around 5%. For arbitrarily shaped particles, lower error magnitudes are possible only if the zeroes of the thickness fringes are used. The errors for sizes obtained by integral-breadth-And Fourier-decomposition-based techniques depend on the shape of the diffracting domains. In the case of integral-breadth analysis, crystal shapes which scatter more intensity into the central peak of the rocking curve have lower size errors. For Fourier-decomposition analysis, crystals which have non-uniform distributions of chord lengths exhibit nonlinearities in the initial ranges of the normalized Fourier cosine coefficient versus column length (|A L | versus L) plots, even when the entire rocking curve is used in the decomposition. It is recommended that, in routine analysis, all domain size determination techniques should be applied to all reflections in a diffraction pattern. If there is significant divergence among these results, the 'average particle size(s)' obtained might not be reliable.en_US
dc.description.sponsorshipTÜBİTAK
dc.description.versionPublisher versionen_US
dc.identifier.doi10.1107/S1600576722002564en_US
dc.identifier.endpage470en_US
dc.identifier.issn0021-8898en_US
dc.identifier.scopus2-s2.0-85131749949
dc.identifier.startpage455en_US
dc.identifier.urihttp://hdl.handle.net/10679/8465
dc.identifier.urihttps://doi.org/10.1107/S1600576722002564
dc.identifier.volume55en_US
dc.identifier.wos000810763300002
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherWileyen_US
dc.relationinfo:turkey/grantAgreement/TUBITAK/118C268
dc.relation.ispartofJournal of Applied Crystallography
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsAttribution 4.0 International*
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.keywordsDiffractionen_US
dc.subject.keywordsFourier analysisen_US
dc.subject.keywordsIntegral breadthen_US
dc.subject.keywordsParticle size determinationen_US
dc.subject.keywordsScherrer approachen_US
dc.titleLower uncertainty bounds of diffraction-based nanoparticle sizesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lower uncertainty bounds of diffraction-based nanoparticle sizes.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: