Publication:
3B kamera takibi için eylemsizlik algılayıcılarının birleştirilmesi

dc.contributor.authorÖzer, N.
dc.contributor.authorErdem, Tanju
dc.contributor.authorErcan, Ali Özer
dc.contributor.authorEroğlu Erdem, Ç.
dc.contributor.departmentElectrical & Electronics Engineering
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorERDEM, Arif Tanju
dc.contributor.ozuauthorERCAN, Ali Özer
dc.date.accessioned2016-02-16T10:26:02Z
dc.date.available2016-02-16T10:26:02Z
dc.date.issued2012
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractIt is well known in a Bayesian filtering framework, the use of inertial sensors such as accelerometers and gyroscopes improves 3D tracking performance compared to using camera measurements only. The performance improvement is more evident when the camera undergoes a high degree of motion. However, it is not well known whether the inertial sensors should be used as control inputs or as measurements. In this paper, we present the results of an extensive set of simulations comparing different combinations of using inertial sensors as control inputs or as measurements. We show that it is better use a gyroscope as a control input while an accelerometer can be used as a measurement or control input. We also derive and present the extended Kalman filter (EKF) equations for a specific case of fusing accelerometer and gyroscope data that has not been reported before.
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1109/SIU.2012.6204725
dc.identifier.endpage4
dc.identifier.isbn978-1-4673-0054-4
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-84863449596
dc.identifier.startpage1
dc.identifier.urihttp://hdl.handle.net/10679/2548
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204725
dc.language.isoturen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherIEEE
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/110E053
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference (SIU)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsBayes methods
dc.subject.keywordsKalman filters
dc.subject.keywordsAccelerometers
dc.subject.keywordsCameras
dc.subject.keywordsGyroscopes
dc.subject.keywordsInertial systems
dc.subject.keywordsNonlinear filters
dc.subject.keywordsSensor fusion
dc.title3B kamera takibi için eylemsizlik algılayıcılarının birleştirilmesien_US
dc.title.alternativeInertial sensor fusion for 3D camera tracking
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7b58c5c4-dccc-40a3-aaf2-9b209113b763
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery7b58c5c4-dccc-40a3-aaf2-9b209113b763

Files